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CHAPTER

ONE

GETTING STARTED

The following section describes how to get started with your Time Tagger.

First, please install the most recent driver/software, including graphical user interfaces, libraries, and examples for C++,
Python, .NET, C#, LabVIEW, and MATLAB.

Time Tagger software download

https://www.swabianinstruments.com/time-tagger/downloads/

You are highly encouraged to read the sections below to get started with the graphical user interface and/or the Time
Tagger programming libraries.

Additional information about the hardware, API, etc. can be found in the menu bar on the left and on our main website:
https://www.swabianinstruments.com/time-tagger/.

If you are using Linux, please take a look at the Linux section.

1.1 Get familiar with your Time Tagger
To learn more about the Time Tagger you are encouraged to consult the following resources.

1. Run the Graphical User Interface, Time Tagger Lab or the Web Application, to play with your Time Tagger
interactively. The examples below will allow you to experience basic data acquisition. Play with the Time
Tagger settings to see their effects on typical measurements.

2. Check out the Application Programming Interface chapter. It gives you a detailed overview of all Time Tagger
features and data processing classes. Check out the following sections to get started using the Time Tagger
software library in the programming language of your choice.

3. Study the code examples in the .\examples\<language>\ folders of your Time Tagger installation.

1.2 Graphical User Interfaces

1.2.1 Time Tagger Lab
Time Tagger Lab is the Graphical User Interface (GUI) application for Windows operating systems. It is designed to
perform standard measurements quickly and to get an interactive experience with your Time Tagger. Here, you can
read a brief description how you can set up a simple cross correlation measurement in Time Tagger Lab. For a full
tutorial to the software, please refer to getting started with Time Tagger Lab.

1. Download and install the most recent Time Tagger software from our downloads site.

2. Start Time Tagger Lab from the Windows start menu.

1
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3. The Time Tagger Lab welcome screen opens and presents all available devices. If you plug or unplug a Time
Tagger, the display will update automatically.

Time Tagger Lab allows you to work with your Time Tagger interactively. We will now use the Time Tagger’s internal
test signal to measure a cross correlation between two channels as an example.

1. On the welcome screen, click on the panel representing your desired device. The Home screen of your Time
Tagger shows up.

2. On the top of the Home screen, you can toggle between the basic display you are currently looking at and the
Detailed View. Activate the Detailed View.

3. In the upper panel of the Detailed View, you can change settings for every input. Activate the internal test
signal on inputs 1 and 2 by checking the boxes on the rightmost column.

4. Go back to the basic display by deactivating Detailed view. The count rate displays (cps) show a test signal
count rate of 800 to 900 kHz, and the trigger level setting is replaced by the label test signal.

With the activated test signal, we can start our first measurement.

1. Click on Open creator (F2) in the Measurements panel on the left. The creator gives you an overview of
all available measurements.

2. Pick Bidirectional histogram - Correlation. Now you can read through a detailed description and
change the initial settings of your measurement.

3. Set Reference channel to 1 and Click channel to 2. Click Add measurement.

4. The measurement graph is showing up. To start the measurement, click the Play button next to the graph.

2 Chapter 1. Getting Started
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5. A Gaussian peak should be displayed. You can zoom in using the controls on the plot. If the resolution is not
sufficient, try a smaller Bin width in the measurement settings.

6. The detection jitter of a single channel is 1√
2

times the standard deviation of this two-channel measurement (the
FWHM (Full-width at half-maximum) of the Gaussian peak is 2.35 times its standard deviation).

You have just verified the time resolution (detection jitter) of your Time Tagger.

1.2.2 Web Application
The Web Application is the traditional provided GUI (Graphical User Interface) for Windows and Linux for quick
measurements. On Windows systems, we recommend switching to Time Tagger Lab today.

1. Download and install the most recent Time Tagger software from our downloads site.

2. Start the Time Tagger Application from the Windows start menu.

3. The Web Application should show up in your browser.

Note

The Web Application uses the TCP port 50120 as default port. If this collides with another application you can
change the port with passing the argument TimeTaggerServer.exe -p 50120.

The Web Application allows you to work with your Time Tagger interactively. We will now use the Time Tagger’s
internal test signal to measure a cross correlation between two channels as an example.

1. Click Add TimeTagger, click Init (select resolution if available) on any of the available Time Taggers.

1.2. Graphical User Interfaces 3
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2. Click Create measurement, look for Bidirectional Histogram (Class: Correlation) and click
Create next to it.

3. Select Rising edge 1 for Channel 1 and Rising edge 2 for Channel 2.

4. Set Binwidth to 10 ps and leave Number of data points at 1000, click Initialize.

The Time Tagger is now acquiring data, but it does not yet have a signal. We will now enable its internal test signal.

1. On the top left, click on the settings wheel next to Time Tagger.

2. On the far right, check Test signal for channels 1 and 2, click Ok.

3. A Gaussian peak should be displayed. You can zoom in using the controls on the plot.

4. The detection jitter of a single channel is 1√
2

times the standard deviation of this two-channel measurement (the
FWHM of the Gaussian peak is 2.35 times its standard deviation).

You have just verified the time resolution (detection jitter) of your Time Tagger.

1.3 Programming languages

1.3.1 Python
1. Make sure the Time Tagger software is installed.

2. Make sure that your Time Tagger device is connected to your computer and the Time Tagger Lab is closed.

3. Make sure a Python distribution is available.

1. On Unix/Linux systems, a system-supported installation of Python should already be present.

2. On Windows systems, you can install Python by following these instructions. We recommend the
default installation (“Install Now”), as it includes all standard libraries and pip.

4. Make sure to install the required Python packages NumPy, Matplotlib, and ipython.

5. Open a command shell and navigate to the .\examples\python\1-Quickstart folder in your Time Tagger
installation directory.

6. Start an ipython shell with plotting support by entering ipython --pylab.

7. Run the hello_world.py script by entering run hello_world.

The hello_world executes a simple yet useful measurement that demonstrates many essential features of the Time Tagger
programming interface:

1. Connect your Time Tagger.

2. Start the built-in test signal (~0.8 MHz square wave) and apply it to channels 1 and 2.

3. Control the trigger level of your inputs - although it is not necessary here.

4. Initialize a standard measurement (Correlation) in order to find the delay of the test signal between channel 1
and 2.

5. How to control the delay of different inputs programmatically.

You are encouraged to open and read the hello_world.py file in an editor to understand what it is doing. With this
basic knowledge, you can explore the other examples in the 1-Quickstart folder:

4 Chapter 1. Getting Started
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No. Topic Classes & Methods
Basic software control (folder 1-basic_software_control)
1-A Create a measure-

ment
createTimeTagger(), Counter::getData(),
Counter::getIndex()

Count rate trace Counter
1-B Start & stop mea-

surements
Countrate, start(), stop(), startFor()

1-C Synchronize mea-
surements

SynchronizedMeasurements

Use different his-
tograms

Correlation, Histogram ,
StartStop, HistogramLogBins

1-D Virtual Channels DelayedChannel, Coincidence, GatedChannel
1-E Logging errors setLogger()
1-F External reference

clock
TimeTaggerSource::setReferenceClock(),
FrequencyStability

Controlling the hardware (folder 2-controlling-the-hardware)
2-A Get hardware infor-

mation
scanTimeTagger(), getSerial(),
getModel(), getSensorData(),
getConfiguration()

2-B The input trigger
level

setTriggerLevel(), getTriggerLevelRange()

2-C Filter tags on hard-
ware

setConditionalFilter(),
setEventDivider()

2-D Control input delays setInputDelay(), Histogram2D
2-E Overflows getOverflows(),

setTestSignalDivider()
2-F HighRes mode createTimeTagger(), TimeDifferences
Dump and re-analyze time-tags (folder 3-dump-and-reanalyze-time-tags)
3-A Dump tags by

FileWriter
FileWriter

3-B The Time Tagger
Virtual

createTimeTaggerVirtual(), TimeTaggerVirtual

Working with raw time-tags (folder 4-working-with-raw-time-tags)
4-A The FileReader FileReader, TimeTagStreamBuffer
4-B Streaming raw

time-tags
TimeTagStream

4-C Custom Measure-
ments

CustomMeasurement

More details about the software interface are covered by the API documentation in the subsequent section.

1.3.2 LabVIEW (via .NET)
In LabVIEW, you can access and program your Time Tagger through .NET interoperability.

A set of examples is provided in .\examples\LabVIEW\ for LabVIEW 2014 and higher (32 and 64 bit).

1.3. Programming languages 5
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1.3.3 MATLAB (wrapper for .NET)
Wrapper classes are provided for MATLAB so that native MATLAB variables can be used.

The Time Tagger toolbox is automatically installed during the setup. If TimeTagger is not available in your MATLAB
environment try to reinstall the toolbox from .\driver\Matlab\TimeTaggerMatlab.mltbx.

The following changes in respect to the .NET library have been made:

• static functions are available through the TimeTagger class,

• all classes except for the TimeTagger, TimeTaggerNetwork, and TimeTaggerVirtual classes will have a TT
prefix (e.g. TTCountrate) to prevent conflict with any variables/classes in your Matlab environment.

Several examples demonstrating how to use the Time Tagger with MATLAB are provided in the .\examples\Matlab\
folder. The 1-Quickstart directory is structured into three subfolders (1-, 2-, and 3-), mirroring the Python quickstart
examples. These cover core topics such as basic measurements, hardware control, and postprocessing, providing a one-
to-one correspondence between MATLAB and Python usage.

1.3.4 Wolfram Mathematica (via .NET)
Time Tagger functionality is provided to Mathematica via the .NET interoperability interface.

1.3.5 .NET
We provide a .NET class library (32, 64 bit and CIL) for the TimeTagger which can be used to access the TimeTagger
from many high-level languages.

The following are important to note:

• Namespace: SwabianInstruments.TimeTagger,

• the corresponding library .\driver\xxx\SwabianInstruments.TimeTagger.dll is registered in the Global
Assembly Cache (GAC),

• static functions (e.g. to create an instance of a TimeTagger) are accessible via SwabianInstruments.
TimeTagger.TT.
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1.3.6 C#
A sample Visual Studio C# project provided in the .\examples\csharp\Quickstart directory covers the basics of
how to use the Time Tagger .NET API. An example of creating ‘custom measurements’ is also included.

Please copy the project folder to a directory within the user environment such that files can be written within the
directory.

An ‘Example Suite’ is provided in the .\examples\csharp\ExampleSuite directory. ‘Example Suite’ is an inter-
active application that demonstrates various measurements that can be performed with the TimeTagger. Reference
source code to setup and plot (with OxyPlot) each measurement is also provided within the application. Additionally,
the application contains examples for creating and using ‘Virtual channels’, ‘Filtering’ and ‘Accessing the raw time
tags’.

Note

Running the Example Suite requires ‘.NET Core 3.1 Desktop Runtime (v3.1.10)’.

1.3.7 C++
The provided Visual Studio C++ project can be found in .\examples\cpp\. Using the C++ interface is the most
performant way to interact with the Time Tagger as it supports writing custom measurement classes with no overhead.
But it is more elaborate compared to the other high-level languages.

Note

• the C++ headers are stored in the .\driver\include\ folder.

• the final assembly must link .\driver\xYZ\TimeTagger.lib.

• the library .\driver\xYZ\TimeTagger.dll is linked with the shared v142 or newer Visual Studio runtime
(/MD).

• use TimeTaggerD.lib and TimeTaggerD.dll for the Visual Studio debug runtime (/MDd).

• use libTimeTagger.dll and libTimeTagger.a for the MinGW C++ ABI for the MINGW32 and UCRT64
environment.

Debug and Release Builds

The choice of build type can have a great effect on the code performance. In Visual Studio, the default compiler flags
for Debug builds are /MDd, /O0, and /Zi. For Release builds these are /MD, /O2, and /DNDEBUG. It is crucial that you
understand these flags and their implications on performance.

• /O0 vs /O2
This flag controls the general optimization level. /O0 means no optimization, so every instruction is sur-
rounded by load_from_memory and store_to_memory. This is a significant waste of CPU resources,
but guarantees that every local variable can be inspected at all times. We suggest the use of the default op-
timization level /O2 and to overwrite it only for required methods using pragmas (see the MSVC optimize
pragma).

• /MDd vs /MD
This flag selects which (incompatible) runtime C++ ABI you want to use for the whole project. The debug
runtime /MDd has additional fields and checks for e.g. better range checking. It is good practice to run your
code with them at least once before each commit. As they are incompatible with each other, all linked C++
libraries must use the same runtime. This flag is the only difference between our debug TimeTaggerD.
dll and non-debug TimeTagger.dll library. We suggest using /MD even for debug builds, otherwise

1.3. Programming languages 7
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the debug runtime will incur significant performance costs, including in the internals of the Time Tagger
library.

• /Zi
This flag tells the compiler to generate a *.pdb symbol file. This is used by the debugger to map e.g. the
assembly to the C++ code and the stack to the local variable. As this has no performance overhead, we
recommend using this flag for all internal builds.

• /DNDEBUG
The macro NDEBUG is the C way to disable assert(). Asserts are usually good at catching logic errors
without much overhead.

The relevant choice is thus not whether to build using Debug or Release, but rather which set of flags to use. Please
select each of them carefully based on your target.

Code Sanitizers

We recommend the use of code sanitizers. Switching your Visual Studio compiler to CLANG allows you to use its
undefined behavior, address, and thread sanitizers. Microsoft has also recently announced the MSVC compiler now
ships with an address sanitizer, which finds out-of-bounds accesses, use-after-free and similar issues. Please consult
the documentation for the AddressSanitizer (ASan) for Windows with MSVC.
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CHAPTER

TWO

INSTALLATION INSTRUCTIONS

2.1 Windows
Time Tagger software requires Windows 10 or higher (64 bit). For Windows 10, we provide full support only for those
versions that are still actively supported by Microsoft. Older versions, while untested, might still work.

2.1.1 Installation
1. Download the installer from our downloads site.

2. Run the installer and follow the instructions.

3. Connect your Time Tagger.

4. Make sure that your computer is connected to the internet once you run the Time Tagger software. The software
needs to request its license from our server. Once the license is transferred, no internet connection is required
anymore.

2.2 Linux

2.2.1 Installation
Download and install the package for your Linux distribution from the Time Tagger downloads page https://www.
swabianinstruments.com/time-tagger/downloads/.

The package installs the Python and C++ libraries for amd64 systems, including example programs.

Graphical user interface (Web Application):

• Launch via timetagger from the console or the application launcher.

2.2.2 Known issues
• In case you have installed a previous version of the Time Tagger software, please reset the cache of your browser.

• Closing the Web Application server may cause an error message to appear.

2.2.3 Time Tagger with Python
• Install NumPy (e.g. pip install numpy), which is required for the Time Tagger libraries.

• The Python libraries are installed in your default Python search path: /usr/lib/pythonX.Y/dist-packages/
or /usr/lib64/pythonX.Y/site-packages/.

• The examples can be found within the /usr/lib/timetagger/examples/python/ folder.
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You can compile a Python module for custom Python installations in the following way:

The source of the Python wrapper _TimeTagger.cxx is provided in /usr/lib64/pythonX.Y/site-packages/
. For building the wrapper, the GNU C++ compiler and the development headers of Python and numpy need to be
installed. The resulting _TimeTagger.so and the high-level wrapper TimeTagger.py relay the Time Tagger C++
interface to Python.

PYTHON_FLAGS="`python3-config --includes --libs`"
NUMPY_FLAGS="-I`python3 -c \"print(__import__('numpy').get_include())\"`"
TTFLAGS="-I/usr/include/timetagger -lTimeTagger"
CFLAGS="-std=c++17 -O2 -DNDEBUG -fPIC $PYTHON_FLAGS $NUMPY_FLAGS $TTFLAGS"

g++ -shared _TimeTagger.cxx $CFLAGS -o _TimeTagger.so

2.2.4 Time Tagger with C++
• The examples can be found within the /usr/lib/timetagger/examples/cpp/ folder.

• The header files can be found within the /usr/include/timetagger/ folder (-I /usr/include/
timetagger).

• The assembly shall be linked with /usr/lib/libTimeTagger.so (-l TimeTagger).

The C++ interface will likely also work on other distributions out of the box.

2.3 Hardware license upgrades
The Time Tagger Ultra and Time Tagger X have a hardware license that can be upgraded to activate additional channels
and features. To upgrade your license, please get in touch with sales@swabianinstruments.com. After purchasing a
license upgrade, the new license becomes available within a few minutes. You can install your new license using one
of the graphical user interfaces. An active internet connection is needed once for the upgrade process.

Note

It is currently not possible to update the hardware licenses of Time Taggers that are connected to a Synchronizer
using Time Tagger Lab. To perform a license update, power off the Synchronizer first by unplugging its power
supply. Then, the Time Taggers will be listed one-by-one and their licenses can be upgraded as described in the
following section.

2.3.1 Time Tagger Lab
1. Connect the Time Tagger to your PC

2. Start Time Tagger Lab

3. If a new license is available, you will see the following:

4. Click on “Update the license”. The new license will be applied immediately and you will see:
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2.3.2 Web Application
1. Connect the Time Tagger to your PC

2. Start the Time Tagger WebApplication

3. Click on “Add Time Tagger” in the top left corner

4. You should see your connected Time Tagger and at the bottom the button “Check for License Upgrade” (the
serial number should be different)

5. Click on “Check for License Upgrade”

6. If a new license is available, you will see the following:

7. If you want to activate the new license, please click “Flash Device” and wait until the process is complete. You
will see the following message:
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CHAPTER

THREE

TUTORIALS

3.1 Getting started with Time Tagger Lab
Time Tagger Lab is the Windows GUI for Swabian Instruments’ Time Tagger devices that you can use to run mea-
surements with just a few clicks. Information on how to download and install the software and how to initiate a basic
testing experiment can be found in the Getting Started section of the documentation. The purpose of this tutorial is to
explore the capabilities of Time Tagger Lab in more detail and to cover the most common aspects of configuring and
running measurements with it.

3.1.1 Selecting a device on the home screen
On the home screen of Time Tagger lab, you will see all Time Tagger devices that are attached to your computer. Each
device can be identified by its serial number, shown in the top left of the corresponding card. If your Time Tagger is
not listed here, it may be because it is in use by another program or not yet powered up.
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Note

Time Tagger Ultra and Time Tagger X have a “HighRes” option to achieve improved jitter that can be updated
over-the-air. If you want to operate in these modes, you should select them here before clicking on the card. If
you are interested in this option and your device has not been configured appropriately, please contact our team at
sales@swabianinstruments.com.

For the Time Tagger X only, there is an additional option to select input impedance, see: setInputImpedanceHigh().

At the bottom of the screen, the workspace menu allows you to select the folder in which your configuration and settings
will be stored, as well as an option to overwrite your previous workspace to default values.

The card named Time Tagger Virtual allows you to experiment with the functionality of Time Tagger Lab without
a physical Time Tagger, using only simulated signals.

3.1.2 Configuring input channels
The first window that is shown is the device view. Here, you see a graphical representation of your Time Tagger
with the available channels highlighted. The live count rate and trigger level are shown above and below each input,
respectively. The trigger level can be adjusted with a slider that appears when hovering over the value. If you are using
a Synchronizer, you can cycle through all synchronized Time Taggers using the arrow buttons to the right and left of
the device.

Below the device view, you will see status indicators for the reference software clock and the time tagger server. To
access detailed options for device settings, and to configure the reference clock and/or server, use the slider in the top
left corner to switch to Detailed View.

In the detailed view, all channel configurations are listed in a table. Most parameters may be applied separately to
rising and falling edges and all channels are treated fully independently of one another. Optionally, channels can be
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assigned a name to make them easier to identify later. When tuning the channel parameters (e.g. Trigger level, Signal
delay, Dead time, Event divider, Conditional filter), it can be very useful to monitor their influence on the displayed
live count rate. These values are shown in a separate column near the right hand side of the table, in counts per second
(“cps”, rising edge events only).

Trigger level

Adjusting the trigger level can help to maximize the signal to noise ratio of your measurement. You can adjust the
trigger level in 1 mV increments, see: setTriggerLevel(). The available range of trigger levels depends on the
specific Time Tagger model, as listed in the Hardware section. Often, the trigger level is set around half the maximum
amplitude of the signal, as this is where the signal tends to be steepest. Please refer to our knowledge base article on
trigger levels for more details.

Signal delay

You can add an arbitrary delay to the signal with 1 ps resolution, see: setInputDelay(). The delay may be either
positive or negative. This setting can be used to offset or align signals in time at different inputs, e.g. to correct for
different cable lengths. For a more detailed discussion on the use of software and hardware delays, please refer to our
knowledge base article on delay compensation.

Dead time

Because the dead time of the Time Tagger is often shorter than that of a detector, undesired signals (e.g. from afterpuls-
ing) may sometimes be acquired as counts. To prevent this, one can modify the dead time to each channel individually,
see: setDeadtime(). The default value is the minimum dead time for the Time Tagger device model.
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Event divider

When working with periodic signals with very high repetition rates (e.g. clocks or pulsed lasers), it may be necessary
to reduce the rate of tags to prevent Overflows. You can apply an event divider to the signal to divide down the rate of
the signal by a factor of n, see: setEventDivider().

Conditional filter

The conditional filter can be configured by selecting one or more triggered (T) and one or more filtered (F) channels,
see: setConditionalFilter() as well as the in-depth guide Conditional Filter.

3.1.3 Performing measurements
Measurements are listed on the left-hand panel of Time Tagger Lab. To start a new measurement, either type the
name of that measurement in the Quick add a measurement box, or open the wizard with the button Open Creator
or by pressing F2. The creator wizard lists all available measurements together with their descriptions and explanatory
figures. For a more detailed description of all supported measurements, please refer to the Measurement Classes section
of the documentation.

In the figure above, a Bidirectional Histogram measurement is selected within the creator wizard. This measurement
is typically used for performing second order correlation / photon antibunching experiments. After adjusting the input
parameters, the measurement can be added with the button Add measurement. If any parameter needs to be adjusted
later, it can be done easily after the measurement has started and whilst it is running. If the input configuration is
incomplete for a valid measurement, a warning will be displayed.
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The measurement view

Once a measurement is added, it will appear as an item in the measurements list and the corresponding chart will appear
under a new tab in the main window. The main measurement controls start, stop and restart can be accessed in
either location.

By default, measurement charts are organized as a horizontal list of tabs. However, you can freely rearrange them by
right-clicking on a tab and choosing float or New Horizontal / Vertical Document Group. In particular on
high-resolution monitors, this allows for displaying many measurements side-by-side with great flexibility.

Measurements list

The measurements list on the top left shows all configured measurements. Their corresponding charts can be hidden
or shown by clicking the ‘eye’ button. Right-clicking on a measurement opens a menu to clone or delete it.

Chart view

The chart view on the right is a live display of the measurement data. Usually, it consists of two elements: a main chart
above and an auxiliary chart below. Left of the main chart are the measurement controls, as well as zooming, panning,
crosshair, data marker and logarithmic axis controls. Zooming is performed by clicking and dragging a box over the
chart. Double-click on the chart to revert to automatic zoom limits. The measurement control for exporting data is
described in more detail under Saving measurement data.

Clicking on a legend checkbox toggles the visibility of that data series, and right-clicking the legend allows it to be
moved to a different corner of the chart.

For most measurements, the auxiliary chart displays either the concurrent Counter or FrequencyCounter mea-
surement of the measured input channels, which can be useful for monitoring purposes. Switch between these two
measurements by clicking on the y-axis label of the auxiliary chart.
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Properties

Time Tagger Lab allows for on-the-fly changes to the inputs of your measurements in the corresponding properties box
in the bottom-left corner of the screen. Changing Display properties only affects how the chart displays the data and
does not interrupt the measurement. Changing other properties typically causes the measurement to restart, with the
new settings in place. The Capture settings determine whether the measurement will run for a fixed amount of time
(Single), repeatedly for a fixed time (Repeating) or indefinitely (Free running).

3.1.4 Processors and virtual channels
Virtual Channels have been partially implemented in Time Tagger Lab since software version 2.18.0. They are
software-defined channels which behave like physical measurement channels, but are created by processors such as
Coincidences, GatedChannel or DelayedChannel. Processors are created similarly to measurements, the main
difference being that their output is not a chart but a (named) virtual channel which can be used as an input for mea-
surements or other virtual channels. The icons used to represent physical channels are numbers within golden circles,
whereas processors are represented by white hexagons around a stylized AND gate.

The tab for creating virtual channels is shown on the left-hand side of the screen and can be switched with the measure-
ments tab. If it is convenient to show both the virtual channels and measurements side by side, the view can be switched
with the layout buttons in the view menu. After a virtual channel is created, it will be listed under every Select/Add
a channel control, alongside the physical input channels.

Processor tips and tricks

Processors can be a very powerful tool to analyze your data, but using them may involve complicated configuration
interdependencies. To help prevent broken dependencies and other pitfalls, Time Tagger Lab restricts some of the
choices you can make when creating and deleting processors. When editing the configuration of a processor, any
measurements that use its virtual channels as inputs must be paused. In addition, the inputs to that processor may only
include virtual channels belonging to previously created processors. When deleting processors or virtual channels, you
will receive a warning listing all the dependent processors and measurements whose configuration will change due to
the removal of the object.

When configuring multiple Coincidences channels with the same coincidence window, it is generally recommended
to combine them in the same processor. The reason for this is that the computational performance is much higher than
for many single-channel Coincidences processors.

Virtual channel naming

All processors must have a unique name, and Time Tagger Lab assigns a default one which you may overwrite freely
to make it more descriptive. For processors with only a single output, such as DelayedChannel, the virtual channel
name matches the processor name. For processors with multiple possible outputs, such as Coincidences, each virtual
channel must have its own name. Again, Time Tagger Lab will assign default names which you are free to change. When
selecting these virtual channels as inputs to a measurement or another processor, the channel name is selected from a
drop-down menu.

20 Chapter 3. Tutorials



Time Tagger User Manual, Release 2.18.2.0

3.1.5 Saving measurement data
These are the two ways of saving measurement data to file within Time Tagger Lab using the relevant chart control.

Note

If you want to save raw time tags to file from Time Tagger Lab use a Time tag file writer measurement instead, see
also: FileWriter.

Export data / trace data

Export data / trace data saves either the main or auxiliary chart data series as a tab-separated text file. The first
line of the file contains descriptive header data.

Export chart

Save chart as saves the main measurement chart as a PNG image.

3.1.6 Reference clock
The reference clock can be configured within the detailed device view. The reference clock provides a powerful
software-defined tool to rescale the time base of the measured tags to an external clock. Select the input to be used for
the clock channel, input the clock frequency and start and stop the reference clock using the toggle button.

3.1.7 Network server
From the detailed device view, a network server can be configured and enabled. For a detailed discussion of Time
Tagger Network, see The TimeTaggerNetwork class. Select the appropriate server AccessMode: Listen, Control, or
SynchronousControl. Start and stop the server using the toggle button.

3.1. Getting started with Time Tagger Lab 21



Time Tagger User Manual, Release 2.18.2.0

3.1.8 Troubleshooting
Time Tagger Lab has several ways of displaying errors. Typically, these are not critical and a normal part of using the
hardware. Understanding error messages helps to troubleshoot possible issues with your measurements.

Note

To reach out to Swabian Instruments user support, please contact us at support@swabianinstruments.com

Overflows

A common error is Overflows, which occur when the tag rate is persistently above the hardware limits. For reference,
the USB 2.0 interface of the Time Tagger 20 is capable of 9 MTags/s, and the USB 3.0 interface of the Time Tagger
Ultra and Time Tagger X can perform at 90 MTags/s. However, the actual rate you can achieve also depends on the CPU
of the PC the Time Tagger is attached to. For a more detailed discussion of this topic, please refer to our knowledge
base article on rate limits.

To avoid overflows, consider the use of Event divider or Conditional filter to reduce the streamed data rate.

Log warning messages

Time Tagger Lab reports warning messages from the backend engine in the log viewer. Example messages would be
a Time Tagger USB disconnection event, or a network client connecting to the local server. If the log viewer is not
currently visible, you can open it with the menu item Show Log Viewer under Windows. Right-clicking anywhere
within the log viewer gives the option to clear the log, or to suppress all existing alarms.

3.2 Measuring Coincidences
Quantum interference lies at the heart of photon-based technologies, such as photonic quantum computing, quantum
metrology, and quantum networks. One of the key requirements for high-fidelity operations in these technologies is
the indistinguishability of photons, a key property of quantum states. The level of indistinguishability between two
photons is typically determined by measuring the Hong–Ou–Mandel (HOM) interference visibility: if the photons are
identical and enter separately a balanced beam splitter, they will always exit the beam splitter together in the same
output mode. If a detector is set up on each of the outputs, then the photons cannot be separately detected by the
two detectors simultaneously. Thus, coincidence measurements enable the detection and analysis of correlated events,
notably the simultaneous detection of entangled photons. When more than two photons are involved in a multipho-
ton quantum interference experiment, the interference capability extends beyond the pairwise distinguishability, and
generalizations of the HOM effect to the many-particle case have been recently proposed. One method to quantify the
n-photon indistinguishability relies on a cyclic multiport interferometer with N = 2n optical modes, composed of 2n
beam splitters placed along two cascaded layers. The quantum interference pattern, resulting from the injection of n
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indistinguishable photons into the 2n ports-interferometer and obtained through a multiphoton coincidence detection,
is a direct measurement of the n-photon indistinguishability.

This tutorial shows how to set up a measurement to count coincidence events between groups of input channels. In
our example, we count fourth-order coincidences between four photons injected into an integrated eight-mode cyclic
interferometer.

3.2.1 Time Tagger configuration
To perform our coincidence-counting experiment, we first connect the Time Tagger and select the channels used.

tagger = createTimeTagger()
input_channels = tagger.getChannelList(ChannelEdge.Rising)[:8]

The Time Tagger hardware allows you to specify a trigger level voltage for each input channel. The default trigger level
is 0.5 V. In our example, we set the trigger level to 0.3 V for all the channels.

for ch in input_channels:
tagger.setTriggerLevel(ch, 0.3)

3.2.2 Coincidence-counting
Our protocol for counting coincidence events is schematically illustrated in the figure below. For clear visualization,
the diagram considers coincidences for two groups of three channels among four input channels used. First, we define
a time window as the largest time difference between events on the input channels to be considered as a coincidence
(size of rectangular shaded colored areas). Next, we generate new streams of tags, which correspond to coincidence
events occurring for each group of input channels (Coincidence [1, 2, 3] and Coincidence [2, 3, 4]). Finally, we count
the events on each channel (bottom panel).
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Our method can be implemented by creating the virtual channel Coincidences, which detects coincidence clicks on
multiple channel groups within the given coincidenceWindow. In this regard, it is good to remember that this is a
software-defined channel; therefore, it receives time-tags from the physical input channels and generates a new data
stream in the PC. The Time Tagger does not detect coincidences onboard the hardware.

In our example, we consider fourth-order coincidence events from eight input channels.

order = 4
groups = list(itertools.combinations(input_channels, order)

coincidences_vchannels = Coincidences(tagger, groups, coincidenceWindow=100)

Finally, the physical input channels and the Coincidences virtual channel are fed into the Counter measurement class.

#Generate a list including input and virtual channels
channels = [*input_channels, *coincidences_vchannels.getChannels()]

counting = Counter(tagger, channels, 1e10, 300)

measurementDuration = 10e12 # 10 s
counting.startFor(measurementDuration)
counting.waitUntilFinished()

index = counting.getIndex()
counts = counting.getData()

3.2.3 Delay adjustment for coincidence detection
When detecting coincidence events, it is essential to have signals aligned in time. Delays between channels inevitably
arise from experimental conditions, such as different optical paths or cable lengths, and inherent delays in the detectors.
Such delays can be compensated in the Time Tagger by providing a proper input delay.

If the signals are sufficiently correlated, the best way to quantify the time misalignment between the channels is to
perform multiple Correlation measurements. The peak of the Correlation curve between two channels is centered at
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the relative delay. This value is employed a posteriori to compensate the time misalignment between the two channels.
In our example, we keep the first channel as a reference and alternatively measure the Correlation between it and all
the others. Finally, we align all the signals in time, using setInputDelay() method.

# Set input delays to 0, otherwise the compensation result will be incorrect.
for ch in input_channels:

tagger.setInputDelay(ch, 0)

# Create SynchronizedMeasurements to operate on the same time tags.
sm = SynchronizedMeasurements(tagger)

#Create Correlation measurements
corr_list = list()
for ch in input_channels[1:]:

corr_list.append(
Correlation(sm.getTagger(), input_channels[0], ch, binwidth=1, n_bins=5000)

)

# Start measurements and accumulate data for 1 second
sm.startFor(int(1e12), clear=True)
sm.waitUntilFinished()

# Determine delays
delays = list()
for corr in corr_list:

hist_t = corr.getIndex()
hist_c = corr.getData()
#Identify the delay as the center of the histogram through a weighted average
dt = np.sum(hist_t * hist_c) / np.sum(hist_c)
delays.append(int(dt))

print("Delays:", delays)

# Compensate the delays to align the signals
for ch, dt in zip(input_channels[1:], delays):

tagger.setInputDelay(ch, dt)

You can check that the delays are properly compensated by repeating the Correlation measurements and verifying that
the histograms are centered at zero.

3.2.4 Exclusive coincidences using Combinations virtual channel
The indistinguishability of the input photons in a quantum interferometry experiment results in a large number of
forbidden output configurations, among the possible many-particle states. This can be viewed as the generalization
of the original two-photon HOM effect extended to the case of multiple ports and photons. In this regard, it turns
out to be beneficial to consider coincidence measurements with specific restrictions. For instance, excluding certain
coincidences based on the occurrence of events happening right before or after them can be important e.g., to eliminate
the effect of background noise, hence for refining quantum state tomography or interference studies.

The best approach to achieve this goal is to employ the virtual channel Combinations. It detects coincidence clicks on
all possible (2𝑁−1) channel subgroups from a given number (N) of channels, when no additional events occur within
two guard windows, one preceding the first event starting the coincidence, the other following the last event concluding
the coincidence. We report below a representative sketch of Combinations virtual channel given three input channels.

It should be noted that the combination of events on channels 1, 2, 3 results in the generation of a timestamp exclusively
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on the virtual channel VCH{1,2,3} and not on VCH{1,3} or VCH{2}. This distinction, however, does not apply to the virtual
channel Coincidences, as the coincidences between channels 1, 2, and 3 constitute a subset of coincidences between
1 and 3. Contextualizing this to the quantum interferometry experiment with four input photons and eight output
ports, coincidences of order higher than four, made possible only by dark counts, are discarded on the fourth-order
combinations. This is true if all eight channels are input to the Combinations virtual channel.

In the following minimal example, we demonstrate how to obtain the virtual channel numbers for fourth-order combi-
nations, that can be input to the Counter measurement class. The goal of the example is to ensure that each combination
includes at least one number from each of the sets {1, 2}, {3, 6}, {4, 5}, and {7, 8}.

# Create the Combinations virtual channel
combinations_vchannels = Combinations(tagger, input_channels, window_size=100)

#Define sets of inclusion
set1 = {1, 2}
set2 = {3, 6}
set3 = {4, 5}
set4 = {7, 8}

# Filter combinations of four channels groups based on conditions
filtered_combinations = [list(comb) for comb in groups

if any(num in set1 for num in comb)
and any(num in set2 for num in comb)
and any(num in set3 for num in comb)
and any(num in set4 for num in comb)]

(continues on next page)
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(continued from previous page)

# Create a list with the virtual channels monitoring the combinations
virtualchannelsnumber = []
for group in filtered_combinations:

virtualchannelsnumber.append(combinations_vchannels.getChannel(group))

3.2.5 Coincidence-counting vs Correlation Measurement
Let us now assume in the following discussion to have only two channels. In this scenario, a coincidence-counting
experiment could be also performed using other measurement classes, such as Correlation. The latter is a multi start,
multi stop measurement, which means that every start click is correlated with every stop click as far they are within the
Correlation time span. This implies that Correlation takes into account both positive and negative time differences.
On the other hand, the “Coincidence + Counter” approach does not discriminate the order of the clicks, as the virtual
channel detects an event whenever the time tags on the two channels are separated within the coincidenceWindow,
regardless of whether this time difference is negative or positive.

Coincidence counts can be retrieved by summing up a few bins of the Correlation histogram around zero time difference,
depending on the size of the defined coincidence window. However, there is one point to consider for getting the correct
number of coincidinces using Correlation measurement class. Please see the figure below.

28 Chapter 3. Tutorials



Time Tagger User Manual, Release 2.18.2.0

When summing the bins of the Correlation together to get coincidence counts, the bin alignment must be taken into
account, to get consistent results from the two analyses. It is indeed important to properly choose the binsize in Corre-
lation such that the edges of the two outer bins align with the coincidenceWindow.

3.3 Confocal Fluorescence Microscope
This tutorial guides you through setting up a data acquisition for a typical confocal microscope controlled with Swabian
Instruments’ Time Tagger. In this tutorial, we will use Time Tagger’s programming interface to define the data acqui-
sition part of a scanning microscope. We will make no specific assumption of how the position scanning system is
implemented except that it has to provide suitable signals detailed in the text.

The basic principle of confocal microscopy is that the light, collected from a sample, is spatially filtered by a confocal
aperture, and only photons from a single spot of a sample can reach the detector. Compared to conventional microscopy,
confocal microscopy offers several advantages, such as increased image contrast and better depth resolution, because
the pinhole eliminates all out-of-focus photons, including stray light.

The following drawing shows a typical confocal fluorescence microscope setup.

In this setup, the objective focuses the excitation light from the laser at the fluorescent sample and, at the same time,
collects the resulting emission. The emission photons pass through the confocal aperture and arrive at the single-photon
detector (SPD). For every detected photon, the SPD produces a voltage pulse at its output, namely a photon pulse.

Image from a raster scan

In the confocal microscopy, the detection area is a small diffraction-limited spot. Therefore, to record an image, one
has to scan the sample surface point-by-point and record the detector signal at every location. The majority of scanning
microscopes employ a raster scan path that visits every point on sample step-by-step and line-by-line. The figure below
visualizes the travel path in a typical raster scan.
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In the figure above, the scan starts from the bottom-left corner and proceeds horizontally in steps. At each scan position,
the scanner has to wait for arbitrary integration time to allow sufficient photon collection. This process stops when the
scanner reaches the top-right point.

Along the scan path, the positioner generates a pulse for every new sample position. In the following text, we will call
this signal a pixel pulse.

To measure a confocal fluorescence image, the arrival times of the following three signals must be recorded: photon
pulses, laser pulses, and pixel pulses.

3.3.1 Time Tagger configuration
The Time Tagger library includes several measurement classes designed for confocal microscopy.

We will start by defining channel numbers and store them in variables for convenience.

PIXEL_START_CH = 1 # Rising edge on input 1
PIXEL_END_CH = -1 # Falling edge on input 1
LASER_CH = 2
SPD_CH = 3

Now let’s connect to the Time Tagger.

tt = createTimeTagger()

The Time Tagger hardware allows you to specify a trigger level voltage for each input channel. This trigger level,
always applies for both, rising and falling edges of an input pulse. Whenever the signal level crosses this trigger level,
the Time Tagger detects this as an event and stores the timestamp. It is convenient to set the trigger level to half a signal
amplitude. For example, if your laser sync output provides pulses of 0.2 V-amplitude, we set the trigger level to 0.1 V
on this channel. The default trigger level is 0.5 V.
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tt.setTriggerLevel(PIXEL_START_CH, 0.5)
tt.setTriggerLevel(LASER_CH, 0.1)

The Time Tagger allows for delay compensation at each channel. Such delays are inevitably present in every measure-
ment setup due to different cable lengths or inherent delays in the detectors and laser sync signals. It is worth noting
that a typical coaxial cable has a signal propagation delay of about 5 ns/m.

Let’s suppose that we have to delay the laser pulse by 6.3 ns, if we want to align it close to the arrival time of the
fluorescence photon pulse. Using the Time Tagger’s API (Application Programming Interface), this will look like:

tt.setInputDelay(LASER_CH, 6300) # Delay is always specified in picoseconds
tt.setInputDelay(SPD_CH, 0) # Default value is: 0

Now we are finished with setting up the Time Tagger hardware and are ready to proceed with defining the measurements.

3.3.2 Intensity scanning microscope
In this section, we start from an easy example of only counting the number of photons per pixel and spend some time on
understanding how to use the pixel trigger signal. The Time Tagger library contains the generic CountBetweenMarkers
measurement that has all the necessary functionality to implement the data acquisition for a scanning microscope.

For the CountBetweenMarkers measurement, you have to specify on which channels the photon and the pixel pulses
arrive. Also, we have to specify the total number of points in the scan, which is the number of pixels in the final image.
Furthermore, we assume that the pixel pulse edges indicate when to start, and when to stop counting photons and the
pulse duration defines the integration time. If your scanning system generates pixel pulses of a different format, take a
look at the section Alternative pixel trigger formats.

As a first step, we create a measurement object with all the necessary parameters provided.

nx_pix = 300
ny_pix = 200
n_pixels = nx_pix * ny_pix

cbm = CountBetweenMarkers(tt, SPD_CH, PIXEL_START_CH, PIXEL_END_CH, n_pixels)

The measurement is now prepared and waiting for the signals to arrive. The next step is to send a command to the
piezo-positioner to start scanning and producing the pixel pulses for each location.

scanner.scan(
x0=0, dx=1e-5, nx=nx_pix,
y0=0, dy=1e-5, ny=ny_pix,

)

Note

The code above introduces a scanner object which is not part of the Time Tagger library. It is an example of a
hypothetical programming interface for a piezo-scanner. Here, we also assume that this call is non-blocking, and
the script can continue immediately after starting the scan.

After we started the scanner, the Time Tagger receives the pixel pulses, counts the events at each pixel, and stores the
count in its internal buffer. One can read the buffer content periodically without disturbing the acquisition, even before
the measurement is completed. Therefore, you can see the intermediate results and visualize the scan progress.

The resulting data from the CountBetweenMarkers measurement is a vector. We have to reorganize the elements of
this vector according to the scan path if we want to display it as an image. For the raster scan, this reorganization can
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be done by a simple reshaping of the vector into a 2D array.

The following code gives you an example of how you can visualize the scan process.

while scanner.isScanning():
counts = cbm.getData()
img = np.reshape(counts, nx_pix, ny_pix)
plt.imshow(img)
plt.pause(0.5)

3.3.3 Fluorescence Lifetime Microscope
In the section Intensity scanning microscope, we completely discarded the time of arrival for photon and laser pulses.
The Time Tagger allows you to record a fluorescence decay histogram for every pixel of the confocal image by taking
into account the time difference between the arrival of the photon and laser pulses. This task can be achieved using
the TimeDifferences measurement from the Time Tagger library. In this subsection, we will use the TimeDifferences
measurement.

The TimeDifferences measurement calculates the time differences between laser and photon pulses and accumulates
them in a histogram for every pixel. The measurement class constructor requires imaging and timing parameters, as
shown in the following code snippet.

nx_pix = 300 # Number of pixels along x-axis
ny_pix = 200 # Number of pixels along y-axis
binwidth = 50 # in picoseconds
n_bins = 2000 # number of bins in a histogram
n_pixels = nx_pix * ny_pix # number of histograms

flim = TimeDifferences(
tt,
click_channel=SPD_CH,
start_channel=LASER_CH,
next_channel=PIXEL_START_CH,
binwidth=binwidth,
n_bins=n_bins,
n_histograms=n_pixels

)

Now we start the scanner and wait until the scan is completed. During the scan, we can read the current data and display
it in real time.

while scanner.isScanning():
counts = flim.getData()
img3D = np.reshape(counts, n_bins, nx_pix, ny_pix) # Fluorescence image cube

# User defined function that estimates fluorescence lifetime for every pixel
flimg = get_lifetime(img3D)

plt.imshow(flimg)
plt.pause(0.5)
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3.3.4 Alternative pixel trigger formats
What if a piezo-scanner provides a different trigger signal compared to considered in the previous sections? In this
section, we look into a few common types of trigger signals and how to adapt our data acquisition to make them work.

Pixel pulse width defines the integration time

The case when the pulse width defines the integration time has been considered in the previous subsections.

Pixel pulse indicates the pixel start

When a pixel pulse has a duration different from the desired integration time, we must define the integration time
manually. One way would be to record all events until the next pixel pulse and rely on a strictly fixed pixel pulse period.
Alternatively, we can create a well-defined time window after each pixel pulse, so the measurement system becomes
insensitive to the variation of the pixel pulse period.

One can define the time window using the DelayedChannel which provides a delayed copy of the leading edge for
the pixel pulse.

integr_time = int(1e10) # Integration time of 10 ms in picoseconds
delayed_vch = DelayedChannel(tt, PIXEL_START_CH, integr_time)
PIXEL_END_CH = delayed_vch.getChannel()

cbm = CountBetweenMarkers(tt, SPD_CH, PIXEL_CH, PIXEL_END_CH, n_pixels)

The approach with using DelayedChannel allows for a constant integration time per pixel even if the pixel pulses do
not occur at a fixed period. For instance, in a raster scan, more time is required to move to the beginning of the next
line (fly-back time) compared to the pixel time.

Warning

You have to make sure that pixel pulses do not appear before the end of the integration time for the previous pixel.
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FLIM with non-periodic pixel trigger

In some cases, a scanner generates the pixel pulses with no strictly defined period. However, most scanning measure-
ments require constant integration time for every pixel. Compared to CountBetweenMarkers, the TimeDifferences
measurement do not have a PIXEL_END marker and accumulate the histogram for every pixel until the next pixel pulse
is received. If this behavior is undesired, or if your pixel pulses are not periodic, you will need to gate your detector to
guarantee a constant integration time.

The Time Tagger library provides you with the necessary tools to enforce a fixed integration time when using the
TimeDifferences measurement. Gating the detector events can be done with the GatedChannel. The example code
is provided below.

integr_time = int(1e10) # Integration time of 10 ms in picoseconds
delayed_vch = DelayedChannel(tt, PIXEL_START_CH, integr_time)
PIXEL_END_CH = delayed_vch.getChannel()

gated_vch = GatedChannel(tt, SPD_CH, PIXEL_START_CH, PIXEL_END_CH)
GATED_SPD_CH = gated_vch.getChannel()

flim = TimeDifferences(tt,
click_channel=GATED_SPD_CH,
start_channel=LASER_CH,
next_channel=PIXEL_START_CH,
binwidth=binwidth,
n_bins=n_bins,
n_histograms=n_pixels

)

Line pulse but no pixel pulses

When a scanning system only has the line-start signal and does not provide the pixel pulses, we have to define time
intervals for each pixel by other means. The pixel markers can be easily generated with EventGenerator virtual
channel which generates events at times relative to the trigger event. Furthermore, the EventGenerator allows you
to generate not only pixel markers that are equally spaced but also pixels that are spaced non-uniformly or have time
varying integration times. For instance, you will find the EventGenerator particularly powerful, if you work with
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resonant galvo-scanners and need to correct integration time and pixel spacing according to the speed profile of your
scanner. The example below shows how to apply EventGenerator for generation of pixel markers.

nx_pix = 300 # Number of pixels along x-axis
ny_pix = 200 # Number of pixels/lines along y-axis
integr_time = int(3e9) # Integration time of 3 ms in picoseconds
line_duration = 1e12 # Duration of the line scan in picoseconds
binwidth = 50 # in picoseconds
n_bins = 2000 # number of bins in a histogram
n_pixels = nx_pix * ny_pix # number of histograms

LINE_START_CH = 3

# Pixels are equally spaced in time (constant speed)
pixel_start_times = numpy.linspace(0, line_duration, nx_pix, dtype='int64')
# Pixel integration time is constant
pixel_stop_times = pixel_start_times + integr_time

# Create EventGenerator channels
pixel_start_vch = EventGenerator(tt, LINE_START_CH, pixel_start_times.tolist())
pixel_stop_vch = EventGenerator(tt, LINE_START_CH, pixel_stop_times.tolist())

PIXEL_START_CH = pixel_start_vch.getChannel()
PIXEL_END_CH = pixel_stop_vch.getChannel()

# Use GatedChannel to gate the detector
gated_vch = GatedChannel(tt, SPD_CH, PIXEL_START_CH, PIXEL_END_CH)
GATED_SPD_CH = gated_vch.getChannel()

flim = TimeDifferences(
tt,
click_channel=GATED_SPD_CH,
start_channel=LASER_CH,
next_channel=PIXEL_START_CH,
binwidth=binwidth,
n_bins=n_bins,
n_histograms=n_pixels

)

Note

In the TimeTagger software v2.7.2 we have completely redesigned Flim measurement. It support easy interface
similar to TimeDifferences, as well as high-performance frame streaming interface that allows for real-time
video-rate FLIM imaging.

3.4 Optically Detected Magnetic Resonance
Optically Detected Magnetic Resonance (ODMR) is a spectroscopic technique used to study electron spins in materials.
It involves applying sequences of optical and microwave pulses to manipulate and probe the spin states of electrons. By
analyzing the response of the material’s photoluminescence to these pulses, valuable information about the spin proper-
ties and dynamics can be obtained. This technique is particularly useful for studying spin-based quantum technologies
and materials such as diamond NV centers, as also shown in this application note.
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This tutorial shows how to set up a pulsed ODMR experiment using our Time Taggers and Pulse Streamer. Pulsed
ODMR offers distinct advantages over continuous mode, including enhanced contrast and reduced sensitivity to laser
power fluctuations. Leveraging Time Taggers provides precise timing control for accurate data acquisition and analysis,
making it ideal for probing fast spin dynamics with high resolution.
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3.4.1 Creation of optical and microwave pulse patterns
In this tutorial we consider a spin-1 system. In most sequences, an initial optical pulse serves to initialize the system,
e.g., preparing it in state |𝑚𝑠 = 0⟩. Following this initialization, a series of microwave (MW) pulses and free evolution
periods manipulate the spin state. Finally, a second optical pulse interrogates the spin state projection along the (|𝑚𝑠 =
0⟩, |𝑚𝑠 = +1⟩) basis, often via optical emission or absorption intensity, while also resetting the system for subsequent
measurements. Various pulse sequences are commonly employed for different measurements:

1. Rabi Oscillation Sequence: In this sequence, a single MW pulse of variable duration is applied, causing the spin
to oscillate between the |𝑚𝑠 = 0⟩ and |𝑚𝑠 = +1⟩ states. The amplitude of the Rabi oscillations provides information
about the energy splitting between the two states. From this measurement the duration of 𝜋- and 𝜋/2-pulses can be
inferred as half and quarter periods of the oscillations, respectively.

2. Ramsey Sequence: This sequence involves two 𝜋/2 MW pulses separated by a variable delay. The delay time
determines the phase relationship between the two pulses, affecting the interference pattern observed in the spin state.
Analysis of the Ramsey fringes allows for precise measurement of the spin coherence time 𝑇 *

2 .

3. Hahn Echo Sequence: In this sequence, a 𝜋/2-pulse is followed by a delay time and then a 𝜋-pulse. The second
pulse flips the spin state, and the delay allows for dephasing to occur. The echo signal observed after the 𝜋/2-pulse
provides information about the spin dephasing time 𝑇2.

To create any of these sequences, we make use of the Sequence class of our Pulse Streamer 8/2. This class allows to
independently set pulse patterns on each channel. A pulse pattern is represented by a tuple in the form (duration, level).
The duration is always specified in nanoseconds and the level is either 0 or 1 for digital output.
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First of all, we connect to the Pulse Streamer.

# Change the following line to use your specific Pulse Streamer IP address
ip_hostname='169.254.8.2'
pulser = PulseStreamer(ip_hostname)

Next, we declare the channels names, and all the relevant parameters for creating a sequence to measure Rabi Oscilla-
tions and quantifying the duration of a 𝜋-pulse. To achieve this, we need to create the following patterns:

1. A pattern to drive the laser, enabling it to emit optical pulses for system initialization and readout.

2. A pattern to drive a high isolation microwave switch for gating the microwave pulses.

3. A pattern for synchronization purposes.

4. A pattern to measure the incoming photons during the readout pulse for time-gated analysis.

# Channel names
optical_ch = 0
mw_ch = 1
sync_ch = 2
gate_ch = 3
# Digital levels
HIGH=1
LOW=0

# Change the values according to your experiment
period = 8000 # period of each pattern
init_pulse_dur = 2000 # width of initialization optical pulses
readout_pulse_dur = 300 # width of readout optical pulses
pause = 1000 # time between a readout and next initializazion pulse

We define then a set of values over which the MW pulse duration (𝜏 ) is swept, to ultimately build the desired pulse
patterns.

tau = np.arange(100, 2000, 100)

# For each selected MW pulse width, the experiment is repeated multiple times
(continues on next page)

3.4. Optically Detected Magnetic Resonance 37



Time Tagger User Manual, Release 2.18.2.0

(continued from previous page)

n_loops = 1000

# Optical pattern
optical_patt = [(init_pulse_dur, HIGH), (period-init_pulse_dur-readout_pulse_dur-pause,␣
→˓LOW),

(readout_pulse_dur, HIGH), (pause, LOW)]*n_loops*len(tau)

# MW pattern
# Initialize the MW pulse pattern
mw_patt = []
for ti in tau:

mw_patt.extend([(init_pulse_dur, LOW), (ti, HIGH), (period-init_pulse_dur-ti,␣
→˓LOW)]*n_loops)

# Pulse pattern that marks a new value of a MW pulse duration
sync_patt = [(10, HIGH), (period*n_loops-10, LOW)]*len(tau)
# Add last sync pulse to the pattern to mark the end of the acquisition
sync_patt.extend([(10, HIGH)])

# Pattern for gating detector clicks
gate_patt = [(period-readout_pulse_dur-pause, LOW), (readout_pulse_dur,HIGH),

(pause, LOW)]*n_loops*len(tau)

# Set channels using class Sequence
seq = Sequence()
seq.setDigital(optical_ch, optical_patt)
seq.setDigital(mw_ch, mw_patt)
seq.setDigital(sync_ch, sync_patt)
seq.setDigital(gate_ch, gate_patt)

# Display your sequence
seq.plot()

3.4.2 Signal generation and detection
To perform ODMR measurements, we connect the Time Tagger and declare the channels used. Here, we can also adjust
the hardware settings for each channel.

tagger = createTimeTagger()
gate = 1
sync = 2
detector = 3

Then, we need to filter the incoming detector clicks revealed by the Time Tagger according to the generated gate pattern.
This can be done at the software level by employing the virtual channel GatedChannel. The rising and falling edges of
the gate signal are used to open and close each time gate, respectively.

gated_detector_vch = GatedChannel(tagger, detector, gate, -gate)
# Get the channel number that will be used in the CBM measurement
gated_detector = gated_detector_vch.getChannel()

Next, we set up a CountBetweenMarkers measurement to count the filtered events on a detector channel between sync

38 Chapter 3. Tutorials



Time Tagger User Manual, Release 2.18.2.0

events, that herald the change of the MW pulse width. The counts are accumulated in an array whose number of bins
is equal to the number of 𝜏 values.

cbm = CountBetweenMarkers(tagger, gated_detector, sync, CHANNEL_UNUSED, len(tau))
cbm.start()
tagger.sync()

Now that the measurement is set up, the sequence can be run by the Pulse Streamer and the events counted by the Time
Tagger. We run the sequence once

n_runs = 1
final = OutputState.ZERO()
pulser.stream(seq, n_runs, final)

and we collect the data

ready = False

# Periodically get data until the CountBetweenMarkers completes the acquisition
while ready is False:

time.sleep(.2)
# Check if the measurement is ready
ready = cbm.ready()
counts = cbm.getData()
# You may add progress visualization code here

3.4.3 Sweeping modes
There are different ways to acquire and accumulate data in these pulsed ODMR experiments. We report here two
protocols to collect events to visualize Ramsey oscillations.

In the first method, the interpulse delay 𝜏 is swept and the data are collected in a single acquisition step after executing
the whole sequence. The example code is analogous to the one of the previous paragraph, except for the construction
of the Ramsey sequence.

dur_pi = 200 # Change value according to the outcome of Rabi measurement
tau = np.arange(100, 1500, 100) # Interpulse time delay

mw_patt = []
for ti in tau:

mw_patt.extend([(init_pulse_dur, LOW), (dur_pi/2, HIGH), (ti, LOW),
(dur_pi/2, HIGH), (period-ti-dur_pi-init_pulse_dur, LOW)]*n_loops)

In the second approach, we repeat the sequence for the same interpulse delay multiple times, as usual, and accumulate
the data before changing the interpulse delay.

#The optical, the sync and gate patterns do not depend on the interpulse delay
optical_patt = [(init_pulse_dur, HIGH), (period-init_pulse_dur-readout_pulse_dur-pause,␣
→˓LOW),

(readout_pulse_dur, HIGH), (pause, LOW)]*n_loops
sync_patt = [(10, HIGH), (period*n_loops-10, LOW)]
sync_patt.extend([(10, HIGH)])
gate_patt = [(period-readout_pulse_dur-pause, LOW), (readout_pulse_dur,HIGH), (pause,␣
→˓LOW)]*n_loops

(continues on next page)
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seq = Sequence()
seq.setDigital(optical_ch, optical_patt)
seq.setDigital(sync_ch, sync_patt)
seq.setDigital(gate_ch, gate_patt)

counts = []

# For each interpulse delay, events on the detector channel
# between two sync marker events are accumulated
cbm = CountBetweenMarkers(tagger, gated_detector, sync, CHANNEL_UNUSED, 1)
tagger.sync()

mw_patt = []
for ti in tau:

mw_patt = [ (init_pulse_dur, LOW), (dur_pi/2, HIGH), (ti, LOW),
(dur_pi/2, HIGH), (period-ti-dur_pi-init_pulse_dur, LOW)]*n_loops

seq.setDigital(mw_ch, mw_patt)

cbm.start()

# Run the sequence
pulser.stream(seq, n_runs, final)

ready = False

# Get data every while
while ready is False:

time.sleep(.2)
ready = cbm.ready()
data = cbm.getData()

# Store the total counts for each interpulse delay into an array
counts.append(data)

3.4.4 ODMR contrast
Quantifying the ODMR contrast, defined as the differential photoluminescence signal between measurements with and
without applying microwave radiation, is crucial for several reasons. It serves as a direct indicator of the efficiency of
spin manipulation and the sensitivity of the measurement setup. High contrast values typically correspond to better
signal-to-noise ratios, enabling more precise determination of resonance frequencies and spin relaxation times.

The schematics of this measurement is reported in the figure below. This trivial sequence is repated for each different
microwave frequency selected, to obtain in the end an ODMR spectrum.

For the data acquisitions, there are two possible implementations:

1. A single CountBetweenMarkers measurement: the rising and falling edges of the gate are used as begin_channel
and end_channel, respectively, and 2N as n_values, where N is the number of frequencies to measure. In the output
array, one gets, for each frequency, the counts while the MW is off in the even bins (0,2,4,6,. . . ) and the counts while
the MW is on in the odd bins (1,3,5,7,. . . ).
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cbm = CountBetweenMarkers(tagger, detector, gate, -gate, 2N)

2. Two different CountBetweenMarkers measurements: one collects counts when the MW frequency is on and
one when the MW frequency is off. In this case MW indicator pulses are needed as markers. For the first CountBe-
tweenMarkers the rising and the falling edges of the MW indicator pulse are used as begin_channel and end_channel,
respectively. On the contrary, for the second measurement the falling edge of the MW indicator pulse is used as be-
gin_channel and the rising edge as end_channel. The gate signal should be used to filter the detector clicks at the
software level using the the virtual channel GatedChannel, as described in the previous paragraph. This ensures the
same acquisition time, for each frequency, when the microwave of and when it is off.

mw_ind = 4

# Create a SynchronizedMeasurements instance that allows you to process the same tags
synchronized = SynchronizedMeasurements(tagger)
sync_tagger_proxy = synchronized.getTagger()

# Accumulate counts when the MW is on
cbm_mw_on = CountBetweenMarkers(sync_tagger_proxy, gated_detector, mw_ind, -mw_ind, N)

# Accumulate counts when the MW is off
cbm_mw_off = CountBetweenMarkers(sync_tagger_proxy, gated_detector, -mw_ind, mw_ind, N)

3.5 Remote Synchronization of Time Taggers
In high-precision applications such as distributed time monitoring, telecommunications, quantum communication, and
quantum key distribution, synchronizing time-tagging devices across remote locations is crucial. When Time Taggers
operate independently, their clocks run free, and even small differences in their frequencies accumulate over time,
creating significant timing discrepancies across multi-device setups.

To overcome this challenge, a synchronization-agnostic and versatile approach is employed. This method supports any
synchronization technology that provides a frequency reference signal (e.g., 10 MHz) and a 1PPS (Pulse Per Second)
timing signal, as shown in the figure below. For example, the White Rabbit is a widely adopted technology that enables
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picosecond-level synchronization precision with sub-nanosecond accuracy across remote setups, as detailed in this
application note. The synchronization process relies on the two timing signals combined with software-based solutions,
including functionalities such as the ReferenceClock, to unify the time bases of the distributed Time Taggers. Users
must ensure that their hardware infrastructure supports the required synchronization signals to enable this functionality.
Moreover, when using the ReferenceClock with Time Tagger 20, an inherent timing error of approximately 200 ps needs
to be considered. More details can be found in the setReferenceClock() documentation and the related in-depth
guide (Software-Defined Reference Clock).

This tutorial demonstrates how to achieve remote synchronized operation of Time Taggers. It provides a step-by-step
guide to synchronizing multiple Time Taggers across distributed locations, unifying their time bases, and merging time
tag streams from remote network nodes for real-time processing using the TimeTaggerNetwork functionality, which
supports simultaneous connections to multiple servers from version 2.18 onward.

Time Difference [ps]
C
ou
n
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3.5.1 Establishing a common time base across distributed locations
A critical step in synchronizing Time Taggers across remote locations is establishing a unified time base. Within our
approach, this is achieved by associating the 1PPS signal fed into the Time Tagger, which is generated at each location
with an external clock locked to a Grand Master (GM), with the Coordinated Universal Time (UTC) provided by the
host PC. To ensure accurate synchronization, the PC clocks at all locations must remain aligned to UTC with a time
shift of less than 0.5 seconds. Synchronizing the PC clock is therefore essential because it allows the system to associate
the 1PPS signal at each location with the correct UTC second, ensuring that all timing data is unified under a common
temporal framework.

The PC clock alignment to UTC can be achieved using reliable synchronization protocols such as Network Time Pro-
tocol (NTP) or Precision Time Protocol (PTP). Standard operating system synchronization tools (e.g., Windows Time
Service, Linux’s ntpd or chrony) configured to synchronize with either publicly available or internal time servers, are
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sufficient to maintain synchronization shift below 0.5 seconds. For enhanced robustness, ease of use, or advanced
configuration options, dedicated synchronization software solutions such as the Meinberg NTP software package are
recommended.

3.5.2 Starting a Time Tagger Server at each location
Once the PC clocks at all locations are aligned to UTC, the next step is to configure each Time Tagger to operate within
a unified time base. By default, timestamps generated by a Time Tagger are relative to when the device was initialized
in software. This means that if multiple Time Taggers start at different times, identical physical events occurring
simultaneously at different locations receive different timestamps.

To synchronize the Time Taggers, enabling measurements across time tag streams generated at remote locations, the
ReferenceClock must be activated. This ensures that all Time Taggers apply a UTC-based offset to their time base,
allowing simultaneous events at remote locations to receive identical timestamps, regardless of when each Time Tag-
ger was started. The ReferenceClock achieves this by locking the internal clock to an external distributed frequency
reference (e.g., 10 MHz) and using the 1PPS signal to establish absolute time alignment.

To set up each Time Tagger, a connection to the device is first established in software. Hardware settings such as
trigger levels and dead time should be configured according to the specific measurement requirements. Then, the
ReferenceClock is enabled, aligning the internal time base with the external synchronization signals. Finally, a server
is started on the host PC, making the Time Tagger accessible over the network for real-time data collection.

import TimeTagger

# Connect to the Time Tagger via USB
tagger = TimeTagger.createTimeTagger()

# Declare the channel names and corresponding physical connections
frequency_channel = 1
PPS_channel = 2

# Define the hardware settings here, such as trigger level or dead time.

# Enable the ReferenceClock
tagger.setReferenceClock(clock_channel=frequency_channel,

clock_frequency=10e6,
time_constant = 1e-4,
synchronization_channel=PPS_channel,
wait_until_locked=true)

# Start the Server.
# TimeTagger.AccessMode sets the access rights for clients.
# Port defines the network port to be used
tagger.startServer(access_mode=TimeTagger.AccessMode.Control,port=41101)

Warning

Activating the ReferenceClock shifts and rescales the internal time base of the Time Tagger. As a result, all ongoing
measurements on every channel will be affected. Data recorded after activating the ReferenceClock will no longer
be comparable with data acquired beforehand from the same Time Tagger instance.
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3.5.3 Connecting to multiple Time Tagger Servers over the network
Once the Time Tagger servers are running at different locations, a client PC can connect to them to retrieve and process
synchronized measurement data. The connection process relies on network communication, where the client searches
for available Time Tagger servers and establishes a link to them.

To automatically discover servers on the local network, the function scanTimeTaggerServers() is used. This func-
tion sends multicast UDP messages to detect active Time Tagger servers and retrieve their IP addresses. However, its
effectiveness depends on the network configuration. Since multicast messages typically remain within the same local
subnet, their ability to reach servers across different subnets depends on whether the network routers forward multicast
packets. If the function does not detect any servers, it is likely that multicast routing is either not enabled or unreli-
able in the network. In cases where scanTimeTaggerServers() fails to find a server, the user needs to know the IP
addresses and network ports of the servers to connect to, when calling createTimeTaggerNetwork() on the client
PC.

# Use the scanTimeTaggerServers() function to search for Time Tagger servers in the␣
→˓local network
servers = TimeTagger.scanTimeTaggerServers()
print("{} servers found.".format(len(servers)))
print(servers)

# Create a TimeTaggerNetwork instance and connect to the desired servers
server_addresses = ["192.168.1.100:41101", "192.168.1.101:41101"] # Replace with the␣
→˓IPs of the servers to connect to
ttn = TimeTagger.createTimeTaggerNetwork(server_addresses)

Warning

When a TimeTaggerNetwork object is created and connected to multiple servers, the time tag streams from dif-
ferent locations are merged into a unified data stream for measurements. This merging process relies on a sorting
algorithm and requires that all incoming time tag streams have similar timestamps, meaning the Time Taggers must
be properly synchronized. If the time bases are not aligned, stream merging fails.

3.5.4 Accessing individual servers
When using a TimeTaggerNetwork object to connect to multiple Time Tagger servers, it is possible to access and con-
trol each individual server separately. This is particularly useful when extracting detailed device-specific information
that is not channel-dependent, such as checking overflow states using methods like getOverflows().

The getServers() method of the TimeTaggerNetwork class returns a list of TimeTaggerServer objects, each
representing one of the connected servers. These server objects act as proxies, providing access to all relevant
control functions available in TimeTaggerBase and TimeTaggerHardware, as long as the servers were created with
AccessMode::Control privileges. Unlike the TimeTaggerNetwork object, a TimeTaggerServer object cannot be
used to perform measurements directly. Namely, it is not possible to pass the TimeTaggerServer object on to any
measurement creator.

For example, to retrieve overflow information from a specific server:

# Retrieve the list of connected Time Tagger servers
servers = ttn.getServers()

# Access a specific server
server_A = servers[0]

(continues on next page)
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# Retrieve overflow information from the server
overflows = server_A.getOverflows()

It is also possible to adjust hardware settings using either the TimeTaggerServer object or the globally mapped
channels via the TimeTaggerNetwork object. Both approaches yield the same result:

# Adjust dead time via the server object
server_A.setDeadtime(1, 1000)

# Equivalent operation using TimeTaggerNetwork global channel mapping
ttn.setDeadtime(1001, 1000)

With the current Software, using TimeTaggerServer objects for configuration is primarily a convenience, as they
serve as proxies for direct interaction with specific servers. However, TimeTaggerServer provides four specific func-
tions that are not available in TimeTaggerNetwork : getAddress(), getAccessMode(), getClientChannel(),
getReferenceClockState().

3.5.5 Verification of the synchronization technology using a single Time Tagger
To evaluate the precision of the synchronization technology, a single Time Tagger can be used before considering a
multi-device setup. The proposed verification consists of enabling the ReferenceClock on one external reference, typi-
cally the master if there is a hierarchy, and using a second external reference as an input to the FrequencyStability
measurement class. This allows direct analysis of the synchronization precision using built-in measurement tools.

The measurement provides stability metrics such as Allan Deviation (ADEV), Modified Allan Deviation (MDEV), and
Time Deviation (TDEV), which quantify timing fluctuations over different timescales. These results characterize the
synchronization performance and provide a reference before working with multiple Time Taggers.

The first external reference is connected to an input channel and used to enable the ReferenceClock. Since all anal-
yses are performed on the same hardware, there is no need for a PPS signal for time synchronization. The second
and additional external references are fed into other input channels and analyzed using the FrequencyStability
measurement. The measurement runs over a range of averaging times to extract stability metrics.

import numpy as np
import time

# Define synchronization channels
ch_master = 1
ch_slave = 2

# Enable the ReferenceClock using the first external reference
tt.setReferenceClock(clock_channel=ch_master,

clock_frequency=10e6,
synchronization_channel=None,
wait_until_locked=True)

# Define measurement steps (logarithmically spaced averaging times)
steps = np.unique(np.logspace(0, 7, 100, dtype=np.int64))

# Initialize Frequency Stability measurement on the second reference
fs = TT.FrequencyStability(tt, ch_slave, steps, average=1)

# Allow the measurement to collect data
time.sleep(100) # Adjust as needed

(continues on next page)
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# Retrieve frequency stability results
obj = fs.getDataObject()
tau = obj.getTau()
ADEV = obj.getADEV()
TDEV = obj.getTDEV()
MDEV = obj.getMDEV()

3.5.6 Measuring synchronization precision across multiple Time Taggers
Before starting experiments where Time Taggers are deployed in remote locations, it is useful to verify the synchro-
nization precision while the units are still physically close to each other. This ensures that the synchronization setup is
working correctly before the Time Taggers are separated.

The verification follows the method described in Swabian Instruments’ application note on remote synchronization. A
common test signal is split using a power splitter or any other method that guarantees that identical copies of the signal
are fed into both Time Taggers. The signal is then connected to an input channel of each device. The Correlation
measurement class is used to analyze the arrival times of events recorded by both Time Taggers, providing a direct
measure of synchronization precision.

The measurement is performed using the TimeTaggerNetwork in a dual-server setup, as discussed in the previous
sections.

import matplotlib.pyplot as plt

# Define the correlation measurement between input channels on both Time Taggers
# We assume the test signal is fed into the third input of each Time Tagger
corr = TimeTagger.Correlation(ttn, 1003, 2003, binwidth=1, n_bins=1000)

# Start the measurement and run it for a given time
corr.startFor(10e12)
corr.waitUntilFinished()

# Retrieve the correlation data
index = corr.getIndex()
counts = corr.getData()

# Plot the correlation result
plt.plot(index, counts)
plt.xlabel("Time Difference (ps)")
plt.ylabel("Counts")
plt.title("Correlation of Synchronized Time Taggers")
plt.grid()
plt.show()
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3.6 Remote Time Tagger with Python

The Time Tagger is a great instrument for data acquisition whenever you detect, count, or analyze single photons. You
can quickly set up a time correlation measurement, coincidence analysis, and much more. However, at some point in
your project, you may want to control your experiment remotely. One option is to use remote desktop software like VNC,
TeamViewer, Windows Remote Desktop, etc. What if you want to control your remote experiment programmatically?
Are you using multiple computers and want to collect data from many of them at the same time? The solution for this
is a remote control interface. Luckily, this task is very common and many software libraries cover the challenge of
dealing with network sockets and messaging protocols.

In the following, we want to demonstrate two ways of connecting to a Time Tagger over a network: Network Time
Tagger and Pyro5.

By using Network Time Tagger, a remote computer has direct access to the Time Tag stream and can perform mea-
surements locally, as if the Time Tagger was directly connected over USB. Network Time Tagger is an ideal solution
for sharing a Time Tagger between different computers. Moreover, it is the only way to connect to multiple Server
Time Taggers with a single software object, enabling the processing of Time Tag streams from different servers on-the-
fly. On the other hand, Pyro can be used to access a Time Tagger remotely. From a remote computer, Pyro can start
measurements on the computer connected to the time tagger and return the results.

3.6.1 Sharing a Time Tagger with Network Time Tagger
From Time Tagger software version 2.10 onward, Time Tagger supports remote operation ‘out-of-the-box’ with Network
Time Tagger. Network Time Tagger implements a server on a computer connected to a Time Tagger and sends the Time
Tag stream directly to the clients. Clients can then connect to the server and run arbitrary measurements independently
on their own computers as if they are directly connected to the hardware device.

The server can be set up with the Time Tagger Graphical User Interfaces (Time Tagger Lab or Web Application) or
the Time Tagger API through TimeTagger::startServer(). When setting up the server, the host can decide on the
level of access for the clients. With AccessMode::Control, the clients have full access to data from all channels and
can change the settings of the Time Tagger. With AccessMode::Listen, the host can decide to only share data from
specific channels.

Clients can connect to the server using the Time Tagger API with createTimeTaggerNetwork(). Once connected,
measurements can be performed directly on the client side. Function calls are identical to the ones used to control a
Time Tagger locally. Therefore, programs written with the Time Tagger API can be easily adapted to run on a remote
computer.

Note

Network Time Tagger can also be used to access a Time Tagger with different programming languages at the same
time, both locally or on a remote computer. With createTimeTaggerNetwork(), it is for example possible to
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run simultaneous measurements with MATLAB and Python.

Below is a minimal working example for setting up a Network Time Tagger server and client with Python 3.6.

Listing 1: Starting a Network Time Tagger server

import TimeTagger

tagger = TimeTagger.createTimeTagger()
#connect to the Time Tagger via USB

tagger.startServer(access_mode = TimeTagger.AccessMode.Control,port=41101)
# Start the Server. TimeTagger.AccessMode sets the access rights for clients. Port␣
→˓defines the network port to be used
# The server keeps running until the command tagger.stopServer() is called or until the␣
→˓program is terminated

Listing 2: Connecting to a Network Time Tagger server

import TimeTagger

tagger = TimeTagger.createTimeTaggerNetwork('ip:port')
# Connect to the Time Tagger server. 'ip' is the IP address of the server and 'port' is the␣
→˓port defined by the server. The default port is 41101

correlation = TimeTagger.Correlation(tagger=tagger, channel_1=1, channel_2=2, binwidth=1,
→˓ n_bins=1000)
# tagger can be used to perform measurements as if the client was connected to the␣
→˓TimeTagger via USB. In this case, the client starts a correlation measurement.
# After a measurement is finished, the client can disconnect with TimeTagger.
→˓freeTimeTagger(tagger)

3.6.2 Remote control of a Time Tagger with Pyro
Pyro5 is a Python library that allows operation of a Time Tagger from a remote computer. It is able to send API
commands to the remote Time Tagger and to obtain their return values. In the following, we describe how to use Pyro5
and achieve seamless access to the Time Tagger’s API remotely.

Listing 3: Teaser code

import matplotlib.pyplot as plt
from Pyro5.api import Proxy

TimeTagger = Proxy("PYRO:TimeTagger@server:23000")
tagger = TimeTagger.createTimeTagger()

hist = TimeTagger.Correlation(tagger, 1, 2, binwidth=5, n_bins=2000)
hist.startFor(int(10e12), clear=True)

x = hist.getIndex()
while hist.isRunning():

plt.pause(0.1)
(continues on next page)
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y = hist.getData()
plt.plot(x, y)

3.6.3 Remote procedure call
Remote procedure call (RPC) is a technology that allows interaction with remote programs by calling their procedures
and receiving the responses. This involves a real code execution on one computer (server), while the client computer
has only a substitute object (proxy) that mimics the real object running on the server. The proxy object knows how to
send requests and data to the server and the server knows how to interpret these requests and how to execute the real
code.

In the case of Pyro5, the proxy object and server code are provided by the library and we only need to tell Pyro5 what
we want to become available remotely.

3.6.4 Initial setup
You will need to have a Python 3.6 or newer installed on your computer. We recommend using Anaconda distribution.

Install the Time Tagger software if you have not done it yet. The description below assumes that you have the Time
Tagger hardware and are familiar with the Time Tagger API .

The last missing part, the Pyro5 package, you can install from PyPi as

pip install Pyro5

3.6.5 Minimal example
Here we start from the simplest functional example and demonstrate working remote communication. The example
consists of two parts: the server and the client code. You will need to run those in two separate command windows.

Server code

We need to create an adapter class with methods that we want to access remotely and decorate it with Pyro5.api.
expose(). The following code is very simple. Later, we will extend it to expose more of the Time Tagger’s function-
ality.

import Pyro5.api
import TimeTagger as TT

@Pyro5.api.expose
class TimeTaggerRPC:

"""Adapter for the Time Tagger Library"""

def scanTimeTagger(self):
"""This method will become available remotely."""
return TT.scanTimeTagger()

if __name__ == '__main__':
# Start server and expose the TimeTaggerRPC class
with Pyro5.api.Daemon(host='localhost', port=23000) as daemon:

# Register class with Pyro
uri = daemon.register(TimeTaggerRPC, 'TimeTagger')
# Print the URI of the published object

(continues on next page)
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print(uri)
# Start the server event loop
daemon.requestLoop()

Client code

On the client side, we need to know the unique identifier of the exposed object, which was printed when you started the
server. In Pyro5, every object is identified by a special string (URI) that contains the object identity string and the server
address. As you can see in the code below, we do not use the Time Tagger software directly but rather communicate to
the server that has it.

import Pyro5.api

# Connect to the TimeTaggerRPC object on the server
# This line is all we need to establish remote communication
TimeTagger = Pyro5.api.Proxy("PYRO:TimeTagger@localhost:23000")

# Now, we can call methods that will be executed on the server.
# Lets check what Time Taggers are available at the server
timetaggers = TimeTagger.scanTimeTagger()
print(timetaggers)

>> ['1740000ABC', '1750000ABC']

Congratulations! Now you have a very simple but functional communication to your remote Time Tagger software.

3.6.6 Creating the Time Tagger
By now, our code can communicate over a network and can only report the serial numbers of the connected Time
Taggers. In this section, we will expand the server code and make it more useful. The next most important feature of
the server is to expose the createTimeTagger() method to tell the server to initialize the Time Tagger hardware.

You may be tempted to extend the TimeTaggerRPC class as follows:

@Pyro5.api.expose
class TimeTaggerRPC:

"""Adapter for the Time Tagger Library"""

def scanTimeTagger(self):
"""Return the serial numbers of the available Time Taggers."""
return TT.scanTimeTagger()

def createTimeTagger(self):
"""Create the Time Tagger."""
return TT.createTimeTagger() # This will fail! :(

To our great disappointment, the createTimeTagger() method will fail when you try to access it from the client.
The reason is in how the RPC communication works. The data and the program code have a certain format in which
it is stored in the computer’s memory, and this memory cannot be easily or safely accessed from a remote computer.
The RPC communication overcomes this problem using data serialization, i.e., converting the data into a generalized
format suitable for sending over a network and understandable by a client system.

The Pyro5, more specifically the serpent serializer it employs by default, knows how to serialize the standard Python
data types like a list of strings returned by scanTimeTagger(). However, it has no idea how to interpret the
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TimeTagger object returned by the createTimeTagger(). Moreover, instead of sending the TimeTagger object
to the client, we want to send a proxy object which allows the client to talk to the TimeTagger object on the server.

For the TimeTagger, we define an adapter class. Then we modify the TimeTaggerRPC.createTimeTagger to create an
instance of the adapter class, register it with Pyro, and return it. Pyro will automatically take care of creating a proxy
object for the client.

@Pyro5.api.expose
class TimeTagger:

"""Adapter for the Time Tagger object"""

def __init__(self, args, kwargs):
self._obj = TT.createTimeTagger(*args, **kwargs)

def setTestSignal(self, *args):
return self._obj.setTestSignal(*args)

def getSerial(self):
return self._obj.getSerial()

# ... Other methods of the TT.TimeTagger class are omitted here.

@Pyro5.api.expose
class TimeTaggerRPC:

"""Adapter for the Time Tagger Library"""

def scanTimeTagger(self):
"""Return the serial numbers of the available Time Taggers."""
return TT.scanTimeTagger()

def createTimeTagger(self, *args, **kwargs):
"""Create the Time Tagger."""
tagger = TimeTagger(args, kwargs)
self._pyroDaemon.register(tagger)
return tagger
# Pyro will automatically create and send a proxy object
# to the client.

def freeTimeTagger(self, tagger_proxy):
"""Free Time Tagger. """
# Client only has a proxy object.
objectId = tagger_proxy._pyroUri.object
# Get adapter object from the server.
tagger = self._pyroDaemon.objectsById.get(objectId)
self._pyroDaemon.unregister(tagger)
return TT.freeTimeTagger(tagger._obj)

3.6.7 Measurements and virtual channels
By now, we can list available Time Tagger devices and create TimeTagger objects. The remaining part is to implement
access to the measurements and virtual channels. We will use the same approach as with the TimeTagger class and
create adapter classes for them.
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@Pyro5.api.expose
class Correlation:

"""Adapter class for Correlation measurement."""

def __init__(self, tagger, args, kwargs):
self._obj = TT.Correlation(tagger._obj, *args, **kwargs)

def start(self):
return self._obj.start()

def startFor(self, capture_duration, clear):
return self._obj.startFor(capture_duration, clear=clear)

def stop(self):
return self._obj.stop()

def clear(self):
return self._obj.clear()

def isRunning(self):
return self._obj.isRunning()

def getIndex(self):
return self._obj.getIndex().tolist()

def getData(self):
return self._obj.getData().tolist()

@Pyro5.api.expose
class DelayedChannel():

"""Adapter class for DelayedChannel."""

def __init__(self, tagger, args, kwargs):
self._obj = TT.DelayedChannel(tagger._obj, *args, **kwargs)

def getChannel(self):
return self._obj.getChannel()

@Pyro5.api.expose
class TimeTaggerRPC:

"""Adapter class for the Time Tagger Library"""

# Earlier code omitted (...)

def Correlation(self, tagger_proxy, *args, **kwargs):
"""Create Correlation measurement."""
objectId = tagger_proxy._pyroUri.object
tagger = self._pyroDaemon.objectsById.get(objectId)
pyro_obj = Correlation(tagger, args, kwargs)
self._pyroDaemon.register(pyro_obj)
return pyro_obj

(continues on next page)
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def DelayedChannel(self, tagger_proxy, *args, **kwargs):
"""Create DelayedChannel."""
objectId = tagger_proxy._pyroUri.object
tagger = self._pyroDaemon.objectsById.get(objectId)
pyro_obj = DelayedChannel(tagger, args, kwargs)
self._pyroDaemon.register(pyro_obj)
return pyro_obj

Note

The methods Correlation::getIndex() and Correlation::getData() return numpy.ndarray arrays.
Pyro5 does not know how to serialize numpy.ndarray, therefore for simplicity of the example, we convert them
to the Python lists.

More efficient approach would be to register custom serializer functions for numpy.ndarray on both, server and
client sides, see Customizing serialization section of the Pyro5 documentation.

3.6.8 Working example
Download the complete source files

• simple_server.py

• simple_example.py

Start the server in a terminal window:

> python simple_server.py

Now open a second terminal window and run the example:

> python simple_example.py

Let us take a look at the source code of the example (shown below). You may recognize that it is
practically the same as using the Time Tagger package directly. The only difference is that the im-
port statement import TimeTagger is replaced by the proxy object creation TimeTagger = Pyro5.api.
Proxy("PYRO:TimeTagger@localhost:23000").

Listing 4: simple_example.py

import numpy as np
import matplotlib.pyplot as plt
import Pyro5.api

TimeTagger = Pyro5.api.Proxy("PYRO:TimeTagger@localhost:23000")

# Create Time Tagger
tagger = TimeTagger.createTimeTagger()
tagger.setTestSignal(1, True)
tagger.setTestSignal(2, True)

print('Time Tagger serial:', tagger.getSerial())
(continues on next page)
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hist = TimeTagger.Correlation(tagger, 1, 2, binwidth=2, n_bins=2000)
hist.startFor(int(10e12), clear=True)

fig, ax = plt.subplots()
# The time vector is fixed. No need to read it on every iteration.
x = np.array(hist.getIndex())
line, = ax.plot(x, x * 0)
ax.set_xlabel('Time (ps)')
ax.set_ylabel('Counts')
ax.set_title('Correlation histogram via Pyro-RPC')
while hist.isRunning():

y = hist.getData()
line.set_ydata(y)
ax.set_ylim(np.min(y), np.max(y))
plt.pause(0.1)

# Cleanup
TimeTagger.freeTimeTagger(tagger)
del hist
del tagger
del TimeTagger

See also

The Time Tagger software installer includes more complete examples of the RPC server that includes more mea-
surements, virtual channels and implements custom serialization of numpy.ndarray types. You can usually
find the example files in the C:\Program Files\Swabian Instruments\Time Tagger\examples\python\
7-Remote-TimeTagger-with-Pyro5.

3.6.9 What is next?
One can follow the ideas presented in this tutorial and implement a fully featured Python package. You can find an
experimental version of such package at PyPi. Instead of manually wrapping every class and function of the Time
Tagger API, the package employs metaprogramming and automatically generates adapter classes.

Let us know if you have any questions about RPC interface for the Time Tagger.

You can expand on the ideas presented in this tutorial, and implement remote control for your complete experiment.
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CHAPTER

FOUR

SYNCHRONIZER

4.1 Overview
The Swabian Instruments’ Synchronizer allows for connecting up to 8 Time Tagger Ultra / Time Tagger X devices to
expand the number of available channels. The Synchronizer generates a clock and synchronization signal to establish
a common time-base on all connected Time Taggers. The Time Tagger software engine creates a layer of abstraction:
the synchronized Time Taggers appear as one device with a combined number of input channels.

4.2 Key applications
The Synchronizer offers numerous advantages beyond its capability to extend the number of input channels up to 160,
when connected to 8 Time Taggers, without introducing any additional time jitter.

4.2.1 Crosstalk elimination
Employing synchronized Time Taggers provides the benefit of effectively suppressing analog crosstalk in comparison
to measurements involving a single device unit. In experiments such as interferometry, for instance, the crosstalk pickup
in correlation measurements hinders the identification of the physical signal from the electronic noise around zero. A
commonly adopted solution consists on delaying signals with respect to each other by using cables of different lengths.
Nevertheless, this approach might introduce additional complexities, e.g. the length difference fluctuates over time due
to temperature variations. In this regard, the Synchronizer represents a more robust solution.

4.2.2 High transfer rate
The data transfer rate from a single Time Tagger to the PC is limited to 90 MTags/s by the single-core CPU performance.
Utilizing more than one Time Tagger allows to use multiple USB controllers and CPU threads, significantly increasing
the total transfer rate (up to 90 MTags/s per device), as far as the Time Tagger and PC processing capabilities are not
overcome.

4.2.3 Multi-room experiment
In some experiments, Time Taggers need to be placed far apart. The cable length between the Synchronizer and the
Time Tagger can be as long as 50 m, without any additional time jitter caused. Different Sync cables result only in a
constant time offset between the signals.

4.2.4 Synchronizer with a single Time Tagger
You can benefit from the Synchronizer with a single Time Tagger at least in the following two application scenarios:

1. Long term clock stability
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The Synchronizer contains a highly stable clock oscillator which you can benefit from even when you have only
one Time Tagger. Just connect any clock output of the Synchronizer to the CLK IN input of the Time Tagger and
enjoy the clock stability provided by the Synchronizer, which matters especially measuring long time differences.

2. Absolute clock timestamps

By connecting all signals from the Synchronizer as shown in Cable connections the timestamps in the Time Tag
stream will be referenced to the power-up time of the Synchronizer. Even when you disconnect the Time Tagger
from your PC, e.g., in case of power down, USB timeout, or software restart, the time tags returned by the Time
Tagger will remain referenced to the start time of the Synchronizer. To verify that this configuration is active,
you will see a warning message in the console on createTimeTagger() that you are using the Synchronizer
with only one Time Tagger.

4.3 Requirements
Successful synchronization of your Time Taggers requires:

• You have obtained the Synchronizer hardware.

• Your Time Tagger Ultra has hardware version 1.2 or higher. In case you have an older device and want to
synchronize it with more units, please contact our support or sales team www.swabianinstruments.com/contact .

• Your PC has a sufficient number of USB3 ports for direct connection of every Time Tagger. The Synchronizer
itself does not require a USB connection.

• You have a sufficient number of SMA cables of the same length. You need three cables for each Time Tagger.
For more details, see in the section Cable connections.

• You have installed the Time Tagger software version 2.6.6 or newer.

4.4 Cable connections
The Synchronizer provides a common clock signal for every Time Tagger as well as the synchronization signals. Fur-
thermore, Time Taggers have to be connected to each other in a loop. The connection sequence in the loop defines the
channel numbering order. An additional feedback signal is required to identify which of the Time Taggers in the loop
is the first.

Using a single Time Tagger with Synchronizer is also possible and you shall connect LOOP IN and LOOP OUT together
on the same device.

Note

After the release of the Synchronizer, we have changed the connector labels on the front panel of Time Tagger
Ultra. In this section, we use the new labeling scheme, while showing the corresponding old labels in brackets:
NEW_LABEL (OLD_LABEL).

Table 1: Connections between the Synchronizer and Time Taggers

Synchronizer Time Tagger Description
CLK OUT <N> CLK IN (CLK) 500 MHz clock
SYNC OUT <N> SYNC IN (AUX IN 1) Synchronization data
FDBK IN FDBK OUT (AUX OUT 2) Feedback from one Time Tagger

Every Time Tagger should have its LOOP OUT (AUX OUT 1) connected to the LOOP IN (AUX IN 2) of next Time
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Tagger, eventually forming a signal loop. The following diagram visualizes the connections required for the synchro-
nization of three Time Taggers.

Warning

For reliable synchronization, the cables for CLK and SYNC signals shall have a length difference below 4 cm. We
recommend using the same cable type for these two signals.

Additionally, we recommend connecting every Time Tagger directly to a USB3 port on the same computer. If your
computer does not have a sufficient number of USB3 ports, avoid using USB hubs as they limit the data bandwidth
available for every Time Tagger. Instead, please install an additional USB controller card into your computer. While
there is a wide variety of USB3 controllers, you have to look for one that can deliver full USB3 bandwidth at every
USB port simultaneously. Typically, such USB controllers have an individual chip for each USB port and require a
PCIe x4 slot on the computer’s motherboard.

4.4.1 Using an external reference clock
The Synchronizer has a built-in high accuracy and low noise reference oscillator and distributes the clock signals to
all attached Time Taggers. In case you want to use your external reference clock, you have to connect it to the REF IN
connector of the Synchronizer. Additionally, the Synchronizer can supply 10 MHz reference signal through its REF
OUT output. Note that REF OUT is disabled when an external reference signal is present at the REF IN.
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Table 2: Requirements to the reference signal at REF IN.

Parameter Value
Coupling AC
Amplitude 0.3 . . . 5.0 Vpp
Frequency 10 MHz
Impedance 50 Ohm

Table 3: Signal parameters at REF OUT.

Parameter Value
Coupling AC
Amplitude 3.3 Vpp (1 Vpp @ 50 Ohm)
Frequency 10 MHz

4.5 Software and channel numbering
The Time Tagger software engine automatically recognizes if a Time Tagger belongs to a synchronized group. It will
also automatically open a connection to all other Time Taggers in the group and present all devices as a single Time
Tagger. There is no specific “master” device, and the connection to the synchronized group can be initiated from any
of the member Time Taggers.

The connection is opened as usual using createTimeTagger(), and optionally you can specify the serial number of
the Time Tagger.

tagger = createTimeTagger()

The tagger object provides a common interface for the whole synchronization loop, and all programming is done in the
same way as for a single Time Tagger. Note that, compared to a single Time Tagger, the channel numbering scheme is
modified for easy identification by a user. The channel number consists of the Time Tagger number in the loop and the
input number on the front panel. The channel number formula is

CHANEL_NUMBER = TT_NUMBER*100 + INPUT_NUMBER

As an example, let us assume we have three Time Tagger Ultra 18 in a synchronization loop. The Time Tagger that
provides the feedback signal to the Synchronizer has sequence number 1, and its channel numbers will be from 101 to
118. The channels of the next Time Tagger will have numbers from 201 to 218, and so forth.

Note

In case the channel numbers on your Time Tagger Ultra start with 0, in the synchronized group, the channel 0 will
appear as N01, where N is the Time Tagger number. See more about channel numbering scheme in the section
Channel Number Schema 0 and 1.

You can request the complete list of available channels with the getChannelList() method.

from TimeTagger import createTimeTagger, TT_CHANNEL_RISING_EDGES

# Connect to any of the synchronized Time Taggers
tagger = createTimeTagger()

(continues on next page)
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(continued from previous page)

# Request a list of all positive edge channels
chan_list = tagger.getChannelList(TT_CHANNEL_RISING_EDGES)
print(chan_list)
>> [101, 102, ... , 317, 318]

4.5.1 Incomplete cable connections
The software engine attempts to detect incorrect or incomplete connections of the cables in the synchronization loop.
In case some connections are missing or were disconnected during operation, the software engine will show a warning
and the data transmission from the disconnected Time Tagger will be filtered out until a valid connection is restored.
Issues with the cable connections and synchronization status are indicated using the status LEDs on the front panel of
the Synchronizer and the Time Tagger. See more in section Status LEDs and troubleshooting.

4.5.2 Buffer overflows
The synchronization loop also propagates the buffer overflow state from any Time Tagger to all members of the loop.
On the software side, the buffer overflow has the same effect as for a single Time Tagger. See, Overflows.

4.6 Limitations

4.6.1 Conditional filter
The conditional filter cannot be applied across synchronized devices. However, it can still be enabled for each Time
Tagger independently.

In case you want to use the conditional filter across devices, you have to send the signal to be filtered (for example, your
laser sync) to every Time Tagger where trigger signals are connected. In software, you have to choose the corresponding
input for time difference measurements.

4.6.2 Internal test signal
The internal test-signal generator is a free-running oscillator independent from the system clock. Therefore, the test
signals are not correlated between different Time Taggers, even if the synchronization loop is set up correctly. If you try
to measure a correlation with the internal test signal across two different Time Taggers, you will see a flat histogram.
On the other hand, performing the same measurement with two input channels of the same Time Tagger will result in
a jitter-limited correlation peak.

Note

If you are synchronizing Time Tagger Ultra and Time Tagger X devices together, the internal test signal frequency
of some of them may be different than expected. The reason for this is that a single testSignalDivider is applied to
the synchronized group, and the internal oscillators of the Time Tagger Ultra and Time Tagger X run at different
frequencies, see: setTestSignalDivider(). Apart from the test signal frequency change, the functionality of
the Time Taggers is not affected.

4.7 Status LEDs and troubleshooting
The front panel of the Synchronizer has several LEDs that indicate operation status.
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LED Color Description
Power dark No power provided
– solid green Powered on
Status dark Warming up
– solid green Normal operation.
FDBK IN solid green Normal operation
– solid red Invalid feedback signal
REF IN dark No external reference signal
– solid green Valid 10 MHz reference signal
– solid red Invalid reference signal
REF OUT dark Output is disabled when using external reference signal
– solid green Output enabled

The LEDs of the Time Tagger Ultra also indicate the state of the synchronization loop. See more details in section
LEDs.
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5.1 Operating conditions
Before installing and operating the Time Tagger, users are strongly advised to follow the guidelines for proper han-
dling. For detailed information on the operating conditions of the Time Tagger, please consult the section Safety &
Compliance.

5.2 Input channels
The Time Tagger has 8, 18, or 20 inputs (SMA-connectors) for Time Tagger 20, Time Tagger Ultra, or Time Tagger X,
respectively. The electrical characteristics are tabulated below. Each input can detect both, rising and falling edges of
an input pulse, and each input has two channels associated with it. Rising edges correspond to channel numbers 1 to
8, 18, or 20 for Time Tagger 20, Time Tagger Ultra, or Time Tagger X, respectively; and falling edges correspond to
respective channel numbers -1 to -8, -18, or -20 for Time Tagger 20, Time Tagger Ultra, or Time Tagger X, respectively.
Thereby, you can treat rising and falling edges in a fully equivalent fashion.

5.2.1 Electrical characteristics

Property Time Tagger 20 Time Tagger Ultra Time Tagger X
Termination 50 Ohm 50 Ohm 50 Ohm / High-Z
Input voltage range (recommended) 0.0 to 3.0 V -3.0 to 3.0 V -1.5 to 1.5 V
Maximum input (no damage) -0.3 to 5.0 V -5.0 to 5.0 V -3.0 to 3.0 V
Trigger level range 0.0 to 2.5 V -2.5 to 2.5 V -1 to 1 V
Minimum signal level 100 mV 100 mV 100 mV
Minimum pulse width 1.0 ns 0.5 ns 350 ps

5.2.2 Configurable input termination - Time Tagger X only
The input termination of the Time Tagger X is configurable during runtime to either 50 Ohm or High-Z (see
setInputImpedanceHigh()). Usually 50 Ohm should be chosen to accomplish proper HF termination, but High-Z
is useful in certain use cases with small amplitudes and weak output drivers.

Caution

When the Time Tagger X is unpowered or not configured (before createTimeTagger() has been called), the
input termination is High-Z. This is to protect the Time Tagger’s input stage from potentially damaging operat-
ing conditions (e.g. signals into an unpowered input stage). Since software version 2.17.0, the termination does

61



Time Tagger User Manual, Release 2.18.2.0

not switch switch to 50 Ohm upon initialization anymore. However, the channel will switch to 50 Ohm by de-
fault as soon as it is registered. To prohibit this switching behavior, set the impedance explicitly to High-Z by
setInputImpedanceHigh() before the first usage of the respective input, e.g. in a measurement.

One of the following measures can be taken when connecting signal sources to the Time Tagger X which are sensitive
to operation without termination:

• The signal source is only operated after the Time Tagger X is powered and configured properly. The Time
Tagger’s input termination is set to 50 Ohm.

• An external 50 Ohm termination is connected between SMA cable and the Time Tagger’s input port. The
Time Tagger’s input termination is set to High-Z.

• An HF circulator or isolator is connected to the output of the signal source to prevent any potentially damaging
reflections from getting into the output.

5.2.3 High Resolution Mode
The Time Tagger Ultra Performance and the Time Tagger X can operate in different High Resolution (HighRes) modes.
An increased resolution is achieved by directing the signal from a single input to multiple time-to-digital converters
(TDCs). Depending on the mode, 2, 4, or 8 TDCs are used per input. By averaging the results, a single timestamp with
lower jitter is generated. On the other hand, this process reduces the number of usable signal inputs.

The tables show the usable inputs for the different modes. Channels available with the minimal four-channel license
are shown without parenthesis. When additional channels are added, the priority will be given to the HighRes ones.

Table 1: Time Tagger Ultra Performance

Mode HighRes channels Standard channels
Standard 1 - 4, (5 - 18)
HighResA 1, 3, 5, 7, (10, 12, 14, 16) (9, 18)
HighResB 1, 5, 10, 14 (9, 18)
HighResC 5, 14 9, 18

Table 2: Time Tagger X

Mode HighRes channels Standard channels
Standard 1 - 4, (5 - 20)
HighResB 1, 5, 9, 13, (17)

Note

As a result of the averaging process, the quality of the calculated timestamps is affected by relative changes in the
internal delays of the contributing inputs. These delays are especially affected by the device’s temperature. It is
strongly recommended to let the device heat up for at least 10 s before starting a measurement. Constant average
count rates (averaged over the timescale of hundreds of milliseconds) will provide the best results. If you need more
information on this topic, please contact us via support@swabianinstruments.com.
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5.3 Data connection
The Time Tagger 20 is powered via a USB connection. Therefore, you should ensure that the USB port is capable of
providing the full specified current (500 mA). A USB >= 2.0 data connection is required for the performance specified
here. Operating the device via a USB hub is strongly discouraged. The Time Tagger 20 can stream about 9 MTags/s.

The Time Tagger Ultra and Time Tagger X has a USB 3.0 interface. This allows to stream up to 90 MTags/s to the PC.
The actual number highly depends on the performance of the CPU the Time Tagger is connected to and the evaluation
methods involved.

In addition, the Time Tagger X is equipped with both an SFP+ Port (10 GbE) and a QSFP+ port (40 GbE) which can
be used for streaming up to 300 MTags/s or 1200 MTags/s respectively.

5.4 LEDs
The Time Tagger devices have LEDs showing status information.

5.4.1 Time Tagger X
Front panel and power button

On its front panel, the Time Tagger X has an LED inside the power button and individual channel status LEDs:

Table 3: Power button LED

Color Description
blue Device in standby, press button to turn it on
green Device running
orange Device is getting ready
red An error occurred

Table 4: Channel LEDs

Color Description
dark Channel unavailable (according to your license)
blue Channel available but not used by a measurement
solid green Measurement running but no data within last 2 s
blinking green

Time tags are streamed to the PC.
Blinking frequency indicates data rate

solid orange Overflow
solid red Error
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Rear panel

Table 5: LED next to the CLK IN input

Color Description
dark No clock signal
solid green Valid reference or synchronization clock
solid red Invalid reference frequency
solid blue Ext. clock valid, but not in use

Table 6: LED next to the SYNC IN input

Color Description
dark No synchronizer on CLK input
green Valid signal at SYNC IN
red Invalid signal at SYNC IN

Table 7: LED next to the LOOP IN input

Color Description
dark No synchronizer on CLK input
green Valid signal at LOOP IN
red Invalid signal at LOOP IN

5.4.2 Time Tagger Ultra
The “Power” LED turns green when the power is supplied to the device.

Table 8: Status LED

Color Description
solid green Firmware loaded
blinking green Time tags are streaming
solid orange

Overflows occurred.
LED turns orange for 0.3 s on overflow events.
Solid orange indicates continuous overflows.

solid red

Device initialization failed
(check USB connection)
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Table 9: LED next to the CLK input

Color Description
dark No clock signal
solid green Valid reference or synchronization clock
solid red Invalid reference frequency
solid blue Ext. clock valid, but not in use
fast blinking red Calibration error on at least one channel
blinking red (hardware <v1.5) Invalid signal at SYNC IN (AUX IN 1)
blinking yellow (hardware <v1.5) Invalid signal at LOOP IN (AUX IN 2)

Table 10: LED next to the SYNC IN input (hardware >=v1.5)

Color Description
dark No synchronizer on CLK input
green Valid signal at SYNC IN
red Invalid signal at SYNC IN

Table 11: LED next to the LOOP IN input (hardware >=v1.5)

Color Description
dark No synchronizer on CLK input
green Valid signal at LOOP IN
red Invalid signal at LOOP IN

5.4.3 Time Tagger 20
The “Power” LED turns green when the power is supplied to the device.

Table 12: Status LED

Color Description
solid green Firmware loaded
blinking green-orange Time tags are streaming
red

Overflows occurred.
LED turns red for 0.1 s on every overflow event.
Solid red indicates continuous overflows.

solid blue

Device initialization failed
(check USB connection)
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5.5 Test signal
The Time Tagger has a built-in test signal generator that generates a square wave with a frequency in the range 0.8 to
1.0 MHz. You can apply the test signal to any input channel instead of an external input. This is especially useful for
testing, calibrating and setting up the Time Tagger initially. The Time Tagger X also provides the opportunity to put
out two square wave signals with a variable frequency via the AUX Out ports on the back of the device.

5.6 Synthetic input delay
You can introduce an input delay for each channel independently. This is useful if the relative timing between two
channels is important, e.g., to compensate for propagation delay in cables of unequal length. The input delay can be
set individually for rising and for falling edges.

5.7 Synthetic dead time
You can introduce a synthetic dead time for each channel independently. This is useful when you want to suppress
consecutive clicks that are closely separated, e.g., to suppress after-pulsing of avalanche photodiodes or as a simple
way of data rate reduction. The dead time can be set individually for rising and for falling edges in each channel.

5.8 Event divider
You can introduce an event divider for each channel independently. This is useful to discard a given number of time
tags before the next one is stored, e.g., to reduce the data transfer rate requirement at expense of the data accumulation
efficiency. The event divider can be set individually for rising and for falling edges.

5.9 Conditional Filter
The Conditional Filter allows you to decrease the time tag rate without losing those time tags that are relevant to your
application, for instance, where you have a high-frequency signal applied to at least one channel. Examples include
fluorescence lifetime measurements or optical quantum information and cryptography, where you want to capture syn-
chronization clicks from a high repetition rate excitation laser.

To reduce the data rate, you discard all synchronization clicks, except those that follow after one of your low rate
detector clicks, thereby forming a reduced time tag stream. The software processes the reduced time tag stream in the
exact same fashion as the full time tag stream.

This feature is enabled by the Conditional Filter. As all channels on your Time Tagger are fully equivalent, you can
specify which channels are filtered and which channels are used as triggers that enable the transmission of a subsequent
tag on the filtered channels.

Note

In Time Tagger 20, the software-defined input delays, as set by the method setInputDelay(), do not apply to the
Conditional Filter logic.

More details and explanations can be found in the In Depth Guide: Conditional Filter.
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5.10 Bin equilibration
The discretization of electrical signals is never perfect. In time-to-digital conversion, this manifests as small differences
(few ps) in the bin sizes inside the converter that even varies from chip to chip. This imperfection is inherent to any
time-to-digital conversion hardware. It is usually not apparent to the user. However, when correlations between two
channels are measured on short time scales, you might see this as a weak periodic ripple on top of your signal. We
reduce the effect of this in the software at the cost of a decrease in the time resolution by

√
2. This feature is enabled

by default. If your application requires time resolution down to the jitter limit, you can disable this feature.

5.11 Overflows
The Time Tagger 20 is capable of continuous streaming of about 9 MTags/s. For the Time Tagger Ultra and Time Tagger
X, continuous tags streamed can exceed 90 MTags/s, depending on the CPU of the PC the Time Tagger is attached to.
Higher data rates for short times are buffered internally, so that no overflow occurs. If continuous higher data rates
persist, the internal buffer gets completely filled. Therefore, some of the time tags are discarded and not transferred
to the PC, resulting in data loss. The hardware allows you to check with TimeTaggerSource::getOverflows()
whether an overflow condition has occurred. If no overflow is returned, you can be confident that every time tag is
received.

Note

When overflows occur, Time Tagger will still produce valid data blocks and discard the invalid tags in between.
Your measurement data may still be valid, although your acquisition time will likely increase.

5.12 External Clock Input

Note

An alternative and more flexible way to apply an external clock signal is the use of
TimeTaggerSource::setReferenceClock(). Since software version 2.10, the software clock is recom-
mended for applying an external clock.

Time Tagger X and Time Tagger Ultra

The external clock input can be used to synchronize different Time Tagger devices. The input clock frequency must
be 10 or 500 MHz. The CLK input requires between 100 mVpp and 4 Vpp AC coupled into 50 Ohm, 500 mVpp
is recommended. The lock status can be read off the LED color: If the CLK LED shines green, the Time Tagger is
locked and uses the provided clock. If the LED is blue, a valid frequency is supplied, however, the Time Tagger is still
configured to use the internal clocking source. In case of a wrong or unstable frequency, the LED will shine red. A
500 MHz CLK input without a Synchronizer will lead to red LEDs on LOOP IN and SYNC IN. Yet, the Time Tagger
will still work normally and the LEDs can be ignored in this case.

External clock signal requirements:

The input clock signal must have a very low jitter to provide the specified performance of the Time Tagger. Please note
that the timing specifications for the Time Tagger Ultra with respect to other devices on the same clock are only met
from hardware version 2.3 and later.

Caution
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In order to reach the specified input jitter for the Time Tagger with an external clock, the input signals must be
uncorrelated to the external clock. This restriction does not exist for setReferenceClock().

Time Tagger 20

The Time Tagger 20 supports software clock feature only.

5.13 Synchronization signals
Time Tagger X and Time Tagger Ultra

Up to 8 Time Tagger Ultra and/or Time Tagger X units can be synchronized in such a way that they behave like a unified
Time Tagger. This requires additional hardware, the Swabian Synchronizer. The Synchronizer uses the additional
hardware connections: SYNC IN, LOOP IN, LOOP OUT and FDBK OUT (see Synchronizer).

Warning

On Time Tagger Ultra units sold before September 2020, the synchronization signals use the ports labeled AUX IN 1,
AUX IN 2, AUX OUT 1, AUX OUT 2. A mapping of the signal names is included in the Synchronizer documentation
(see Synchronizer). If you own one of these units and would like to have a sticker to update your labels, please reach
out to Swabian Instruments support .

Time Tagger 20

Synchronization of multiple Time Tagger 20 devices is not possible.

5.14 FPGA link
Time Tagger X

The Ethernet based FPGA link can be used for connecting customer’s FPGA designs directly to the Time Tagger X. The
connection is provided through either SFP+ or QSFP+ connector on the back panel of the Time Tagger X. Either one
of them can be active and shall be used for connection of customer’s design using either a Direct Attach Cable (DAC)
or optical fiber transceiver. More details and explanations can be found in the In Depth Guide: FPGA link.

Time Tagger Ultra and Time Tagger 20

Time Tagger Ultra and Time Tagger 20 have no support for FPGA link.

5.15 General purpose IO (GPIO)
Time Tagger Ultra

Starting from the Time Tagger v2.6.6, the general purpose inputs and outputs on Time Tagger Ultra are used for syn-
chronization signals. New Time Tagger Ultra devices will have updated labeling of these IO ports. See, Synchronizer

Time Tagger 20

The Time Tagger 20 is equipped with four general purpose IO ports that interface directly with the system’s FPGA.
These are reserved for future implementations.
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5.16 19-inch rack mount
Time Tagger X

The Time Tagger X can either be installed in a 19-inch rack, requiring two height units, or operated as a tabletop
instrument.

Time Tagger Ultra

Swabian Instruments offers an extra housing to make the tabletop Time Tagger Ultra mountable in a 19-inch rack.

Fig. 1: Rack mount for up to two Time Tagger Ultra and one Synchronizer

Table 13: Specifications of the Time Tagger Ultra rack mount

Parameter Value
Channels Up to 18 with one Time Tagger Ultra installed

Up to 36 with two Time Tagger Ultra installed
Height units 3
Depth 37 cm
Weight without de-
vices

3.5 kg

Please get in touch with sales@swabianinstruments.com for additional information.

Time Tagger 20

Swabian Instruments doesn’t provide an option to mount the Time Tagger 20 in a 19-inch rack.
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CHAPTER

SIX

SOFTWARE OVERVIEW

At the heart of the Time Tagger software is a multi-threaded processing engine that receives the time tag stream and
feeds it to all running measurements. The measurements and the virtual channels are parallel processing units that
analyze the time tag stream each in their own way. For example, a count rate measurement analyzes all time tags
from one or more specific channels and calculates the average number of tags received per second. A cross-correlation
measurement compute the cross-correlation between two channels, typically by sorting the time tags in histograms,
and so on. Such a powerful architecture enables you to perform any thinkable digital time domain measurement in real
time. You have several choices on how to use this architecture.

6.1 Graphical User Interfaces
The easiest way of using the Time Tagger is one of the graphical user interfaces, either Time Tagger Lab (only on
Windows OS) or the Web Application. They allow you to interact with the hardware on your computer or a tablet. You
can create measurements, get live plots, and save and load the acquired data.

6.2 Precompiled libraries and high-level language bindings
We have implemented a set of commonly useful measurements including count rates, auto-correlation, cross-
correlation, fluorescence lifetime imaging (FLIM (Fluorescence-lifetime imaging microscopy)), etc. For most users,
these measurements will cover all needs. These measurements are included in the C++ API and provided as precom-
piled library files. To make using the Time Tagger even easier, we have equipped these libraries with bindings to
higher-level languages (Python, MATLAB, LabVIEW, .NET) so that you can directly use the Time Tagger from these
languages. With this API you can easily start a complex measurement from a higher-level language with only two lines
of code. To use one of these APIs, you have to write the code in the high-level language of your choice. Refer to the
chapters Getting Started and Application Programming Interface if you plan to use the Time Tagger in this way.

6.3 C++ API
The underlying software architecture is provided by a C++ API that implements two classes: one class that represents
the Time Tagger and one class that represents a base measurement. On top of that, the C++ API also provides all
predefined measurements that are made available by the web application and high-level language bindings. To use this
API, you have to write and compile a C++ program.
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CHAPTER

SEVEN

APPLICATION PROGRAMMING INTERFACE

The Time Tagger API provides methods to control the hardware and to create measurements that are hooked onto the
time tag stream. It is written in C++ and we also provide wrapper classes for several common higher-level languages
(Python, MATLAB, LabVIEW, .NET). Maintaining this transparent equivalence between different languages simplifies
documentation and allows you to choose the most suitable language for your experiment. The API includes a set of
standard measurements that cover common tasks relevant to photon counting and time-resolved event measurements.
These classes will most likely cover your needs and, of course, the API provides you a possibility to implement your
own custom measurements. Custom measurements can be created in one of the following ways:

• Subclassing the IteratorBase or CustomMeasurement class (best performance, but only available in the C++,
C# and Python API - see example in the installation folder)

• Using the TimeTagStream measurement and processing the raw time tag stream.

• Offline processing when you store time-tags into a file using FileWriter and then read the resulting file to
perform desired analysis of the time-tags. This also enables to keep a record of the complete chronology of the
events in your experiment.

7.1 Examples
Often the fastest way to get an impression on the API is through examples. Several examples for multiple programming
languages are available in the Time Tagger installation folder.

7.1.1 Measuring cross-correlation
The code below shows a simple yet operational example of how to perform a cross-correlation measurement with the
Time Tagger API. In fact, such simple code is already sufficient to perform real-world experiments in a lab.

# Create an instance of the TimeTagger
tagger = createTimeTagger()

# Adjust trigger level on channel 2 to 0.25 V
tagger.setTriggerLevel(2, 0.25)

# Add time delay of 123 picoseconds on the channel 3
tagger.setInputDelay(3, 123)

# Create Correlation measurement for events in channels 2 and 3
corr = Correlation(tagger, 2, 3, binwidth=10, n_bins=1000)

# Run Correlation for 1 second to accumulate the data
corr.startFor(int(1e12), clear=True)

(continues on next page)
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(continued from previous page)

corr.waitUntilFinished()

# Read the correlation data
data = corr.getData()

7.1.2 Using virtual channels
Time Tagger API implements on-the-fly time-tag processing through virtual channels. The following example shows
how time-tags from two different real channels can be combined into one virtual channel.

tagger = createTimeTagger()

# Enable internal generator to channels 1 and 2. Frequency ~800 kHz.
tagger.setTestSignal([1,2], True)

# Create virtual channel that combines time-tags from real inputs 1 and 2
vc = Combiner(tagger, [1, 2])

# Create countrate measurement at channels 1, 2 and the "combiner" channel
rate = Countrate(tagger, [1, 2, vc.getChannel()])

# Run Countrate for 1 second and print the result for all three channels
rate.startFor(int(1e12), clear=True)
rate.waitUntilFinished()
print(rate.getData())

>> [ 800008.81 800008.81 1600017.62]

From the results, we see that the combined event rate is a sum of the event rates at both input channels, as expected.

7.1.3 Using multiple Time Taggers
You can use multiple Time Taggers on one computer simultaneously. In this case, you usually want to associate your
instance of the TimeTagger class to the Time Tagger device. This is done by specifying the serial number of the
device, an optional parameter, to the factory function createTimeTagger().

tagger_1 = createTimeTagger("123456789ABC")
tagger_2 = createTimeTagger("123456789XYZ")

The serial number of a physical Time Tagger is a string of digits and letters (every Time Tagger has a unique hardware se-
rial number). It is printed on the label at the bottom of the Time Tagger hardware. In addition, the scanTimeTagger()
method shows the serial numbers of the connected but not instantiated Time Taggers. It is also possible to read the
serial number for a connected device using getSerial() method.

You can find more examples supplied with the TimeTagger software. Please see the examples\<language> subfolder
of your Time Tagger installation. Usually, the installation folder is C:\Program Files\Swabian Instruments\
Time Tagger.

7.1.4 Using Time Tagger remotely
Using Network Time Tagger you can stream the time-tags to a remote computer(s) and process them independently.
You can easily work with your Time Tagger device over the network as if your remote computer is connected directly
to the hardware. This example shows how you can start the server, connect a client to it and perform a simple countrate
measurement.
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You can start the server by calling startServer() on a existing TimeTagger object.

# Connected to the hardware as usual
tagger = createTimeTagger()

# Start the server with full remote control enabled
tagger.startServer(AccessMode.Control)

# Keep this process running
input('Press ENTER to exit the server process...')

# Stop the server if user pressed ENTER key
tagger.stopServer()

# Disconnect from the hardware
freeTimeTagger(tagger)

For simplicity of the example we assume that the server is running as a separate process on the same computer. There-
fore, we run the client code on the same computer and use localhost as a server address. You can also adjust the
server address and try the client code on another PC.

# Server address, we assume it runs on the same computer
address = 'localhost'

# Connect to the server
ttn = createTimeTaggerNetwork(address)

# Enable test signal on the remote hardware
ttn.setTestSignal(1, True)
ttn.setTestSignal(2, True)

# Create `Countrate` measurement and run it for a fixed duration
cr = Countrate(ttn, [1,2,3])
cr.startFor(1e12)
cr.waitUntilFinished()

# Print the resulting data
print(cr.getData())

# Close the connection to the server
freeTimeTagger(ttn)

7.2 The TimeTagger Library
The Time Tagger Library contains classes for hardware access and data processing. This section covers the units and
terminology definitions as well as describes constants and functions defined at the library level.

7.2.1 Units of measurement

timestamp_t

Time is measured and specified in picoseconds. Time-tags indicate time since device start-up, which is repre-
sented by a 64-bit integer number. Note that this implies that the time variable will roll over once approximately
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every 107 days. This will most likely not be relevant to you unless you plan to run your software continuously
over several months, and you are taking data at the instance when the rollover is happening.

Analog voltage levels are specified in volts.

7.2.2 Channel numbers

channel_t

You can use the Time Tagger to detect both rising and falling edges. Throughout the software API, the rising edges
are represented by positive channel numbers starting from 1 and the falling edges are represented by negative
channel numbers. Virtual channels will automatically obtain numbers higher than the positive channel numbers.

The Time Taggers delivered before mid 2018 have a different channel numbering. More details can be found in
the Channel Number Schema 0 and 1 section.

7.2.3 Unused channels
There might be the need to leave a parameter undefined when calling a class constructor. Depending on the program-
ming language you are using, you pass an undefined channel via the static constant CHANNEL_UNUSED, which can be
found in the TT class for .NET and in the TimeTagger class in MATLAB.

7.2.4 Constants

constexpr channel_t CHANNEL_UNUSED
Can be used instead of a channel number when no specific channel is assumed. In MATLAB, use TimeTagger.
CHANNEL_UNUSED.

7.2.5 Enumerations

enum class AccessMode
Controls how the Time Tagger server delivers the data-blocks to the connected clients, and if the clients are
allowed to change the hardware settings.

Values:

enumerator Listen
Clients cannot change settings on the Time Tagger and only subscribe to the exposed channels. The data-
blocks are delivered asynchronously to every client.

enumerator SynchronousListen
The same as AccessMode::Listen but the data is delivered synchronously to every client.

Warning

This mode is not recommended for general use. The server will attempt to deliver a data-block to every
connected client before sending the next data-block. Therefore, the data transmission will always be
limited by the slowest client. If any of the clients cannot handle the data rate fast enough compared to
the data-rate produced by the Time Tagger hardware, all connected clients will be affected and the Time
Tagger hardware buffer may overflow. This can happen due to the network speed limit or insufficient
CPU speed on any of the connected clients.
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enumerator Control
Clients have control over all settings on the Time Tagger. The data-blocks are delivered asynchronously to
every client.

enumerator SynchronousControl
The same as AccessMode::Control but the data is delivered synchronously to every client.

Warning

This mode is not recommended for general use. The server will attempt to deliver a data-block to every
connected client before sending the next data-block. Therefore, the data transmission will always be
limited by the slowest client. If any of the clients cannot handle the data rate fast enough compared to
the data-rate produced by the Time Tagger hardware, all connected clients will be affected and the Time
Tagger hardware buffer may overflow. This can happen due to the network speed limit or insufficient
CPU speed on any of the connected clients.

enum class ChannelEdge : int
Selects the channels that TimeTaggerHardware::getChannelList() returns.

Values:

enumerator All
Rising and falling edges of channels with HighRes and Standard resolution.

enumerator Rising
Rising edges of channels with HighRes and Standard resolution.

enumerator Falling
Falling edges of channels with HighRes and Standard resolution.

enumerator HighResAll
Rising and falling of channels edges with HighRes resolution.

enumerator HighResRising
Rising edges of channels with HighRes resolution.

enumerator HighResFalling
Falling edges of channels with HighRes resolution.

enumerator StandardAll
Rising and falling edges of channels with Standard resolution.

enumerator StandardRising
Rising edges of channels with Standard resolution.
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enumerator StandardFalling
Falling edges of channels with Standard resolution.

enum class CoincidenceTimestamp
Defines what timestamp to use for a coincidence event in Coincidence / Coincidences.

Values:

enumerator Last
Use the last time-tag to define the timestamp of the coincidence.

enumerator Average
Calculate the average timestamp of all time-tags in the coincidence and use it as the timestamp of the
coincidence.

enumerator First
Use the first time-tag to define the timestamp of the coincidence.

enumerator ListedFirst
Use the timestamp of the channel at the first position of the list when Coincidence or a group of Coincidences
is instantiated.

enum class FpgaLinkInterface
Determines which Ethernet Port on the Time Tagger X should be used in TimeTagger::enableFpgaLink().

Values:

enumerator SFPP_10GE
Use the SFP+ Port on the Time Tagger X for FPGA link output.

enumerator QSFPP_40GE
Use the QSFP+ Port on the Time Tagger X for FPGA link output.

enum class GatedChannelInitial
The initial state of a GatedChannel.

Values:

enumerator Closed
The gate is closed initially.

enumerator Open
The gate is open initially.

enum class Resolution
Defines the resolution mode of the Time Tagger on connection using createTimeTagger(). Details on the available
inputs are listed in the hardware overview .

Values:
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enumerator Standard
Use one time-to-digital conversion per channel. All physical inputs can be used.

enumerator HighResA

Use two time-to-digital conversions per channel. The resolution is increased by a factor of ≃
√
2 compared

to the Standard mode, but only a reduced number of certain inputs can be used. Some inputs may remain
in Standard mode depending on your license.

enumerator HighResB
Use four time-to-digital conversions per channel. The resolution is increased by a factor of ≃ 2 compared
to the Standard mode, but only a reduced number of certain inputs can be used. Some inputs may remain
in Standard mode depending on your license.

enumerator HighResC

Use eight time-to-digital conversions per channel. The resolution is increased by a factor of≃
√
8 compared

to the Standard mode, but only a reduced number of certain inputs can be used. Some inputs may remain
in Standard mode depending on your license.

enum class Tag::Type
Specifies the type of a time tag.

Values:

enumerator TimeTag
Indicates a standard event corresponding to a detected signal edge.

enumerator Error
Indicates a hardware or communication-related error condition (e.g., plugging an external clock source,
invalidating the global time base).

enumerator OverflowBegin
Marks the beginning of an interval with incomplete data because of too high data rates.

enumerator OverflowEnd
Marks the point where the internal overflow condition ended, resuming normal event tagging.

enumerator MissedEvents
A virtual event indicating the number of lost events per channel within an overflow interval. This event
might be sent repeatedly if the number of lost events is large.

enum class UsageStatisticsStatus
Values:

enumerator Disabled
Usage statistics collection and upload is disabled.
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enumerator Collecting
Enable usage statistics collection local but without automatic uploading. This option might be useful to
collect usage statistics for debugging purpose.

enumerator CollectingAndUploading
Enable usage statistics collection and automatic upload

7.2.6 Functions
TimeTagger createTimeTagger(str serial = "", Resolution resolution = Resolution::Standard)

Establishes the connection to a first available Time Tagger device and creates a TimeTagger object. Optionally,
the connection to a specific device can be achieved by specifying the device serial number.

If the HighRes mode is available, it can be selected from Resolution. Details on the available inputs are listed in
the hardware overview .

In MATLAB, this function is accessed as TimeTagger.createTimeTagger.

Parameters

• serial – Serial number string of the device or empty string.

• resolution – Select the resolution of the Time Tagger. The default is
Resolution::Standard .

Throws
RuntimeError – if no Time Tagger devices are available or if the serial number is not correct.

Returns
A Time Tagger object

TimeTaggerVirtual createTimeTaggerVirtual(str filename = "", timestamp_t begin = 0, timestamp_t duration =
-1)

Creates a TimeTaggerVirtual object. Virtual Time Tagger uses files generated by the FileWriter as data source
instead of the Time Tagger hardware. This allows you to use all Time Tagger library measurements for offline
processing of the dumped time tag stream. For example, you can repeat the analysis of your experiment with
different parameters, like different binwidths etc.

The file parameter can specify a header file or single specific file as shown in the following example.

# Assume we have following the files in the current directory:
# filename.ttbin
# filename.1.ttbin
# filename.2.ttbin

# Replay all files named "filename.NN.ttbin" sequentially
replay_source.appendFile('filename.ttbin')

# Replay a single file "filename.1.ttbin"
replay_source.appendFile('filename.1.ttbin')

In MATLAB, this function is accessed as TimeTagger.createTimeTaggerVirtual.

Parameters

• filename – File name of the initial file. This file defines the available external channels.
Default is an empty string which creates a simulated Time Tagger with 18 channels.
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• begin – Time offset from the beginning of the file in ps to start the replay at. Default is 0.

• duration – Duration in picoseconds to be read from the file. duration=-1 will replay ev-
erything. Default is -1.

Returns
Time Tagger Virtual object

TimeTaggerNetwork createTimeTaggerNetwork(str[] addresses)
Creates a new TimeTaggerNetwork object. During creation, the object tries to open a connection to the specified
Time Tagger servers that have been created by TimeTagger::startServer(). This makes the remote time-tag
stream locally available.

When more than one server is specified, the channel number of the n-th server is offset by n * 1000, e.g., channel
3 of the second server will become 2003. Moreover, the different servers must be synchronized to an external
clock. If the connection fails, the method will throw an exception.

In MATLAB, this function is accessed as TimeTagger.createTimeTaggerNetwork.

Parameters
addresses – IP addresses, or hostnames, of the servers. Use hostname:port for each server.

Throws

• RuntimeError – if the connection to the server cannot be made.

• RuntimeError – if the address string has an invalid format.

• RuntimeError – if attempting to connect to multiple non-synchronized servers.

Returns
Time Tagger Network object

str getTimeTaggerServerInfo(str address = "localhost:41101")
Returns Time Tagger configuration, exposed channels, hardware channels and virtual channels as a JSON for-
matted string.

Parameters
address – IP address, hostname or domain-name of the server, where the Time Tagger server is
running. The port number is optional and can be specified if server listens on a port other than
default 41101.

Throws

• RuntimeError – if the connection to the server cannot be made.

• ValueError – if the address string has an invalid format.

Returns
Information about server, available channels and exposed channels.

void freeTimeTagger(TimeTaggerBase tagger)
Releases all Time Tagger resources and terminates the active connection.

Parameters
tagger – Time Tagger Base object to disconnect

str[] scanTimeTagger()
Returns a list of the serial numbers of the connected but not instantiated Time Taggers. It may return serials
blocked by other processes or already disconnected some milliseconds later.

In MATLAB this function is accessible as TimeTagger.scanTimeTagger().
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Returns
List of serial numbers

str[] scanTimeTaggerServers()
Scans the network for available Time Tagger servers.

Note

The server discovery algorithm uses multicast UDP messages sent to the address 239.255.255.83:41102.
This method is expected to work well in most situations, however there is a possibility when it could fail.
The servers may not be discoverable if the system firewall rejects multicast traffic or blocks access to UDP
port 41102. Additionally, multicast traffic is typically not forwarded to other IP networks by routers.

Returns
A list of addresses of the Time Tagger servers that are available in the network.

logger_callback setLogger(logger_callback callback)
Registers a callback function, e.g. for customized error handling. Please see the examples in the installation folder
on how to use it. Callback function shall have the following signature callback(level, message). By default, the
log messages are printed into the console.

Python example:

def logger_func(level, message):
print(level, message)

setLogger(logger_func)

Matlab example:

function logger_func(level, message)
fprintf('%d : %s\n', level, message)

end
TimeTagger.setLogger(@logger_func)

void setTimeTaggerChannelNumberScheme(int scheme)

Deprecated:
Since version 2.17 all values of scheme except for 1 are deprecated

Selects whether the first physical channel starts with 0 or 1.

This method is deprecated and will be removed soon. The only purpose of this method
is to call setTimeTaggerChannelNumberScheme(TT_CHANNEL_NUMBER_SCHEME_ONE) with
TT_CHANNEL_NUMBER_SCHEME_ONE = 2) before createTimeTagger for old devices (channel numbers
starting with 0) which will suppress a deprecation warning.

Attention
The method must be called before the first call to createTimeTagger.

int getTimeTaggerChannelNumberScheme()

Deprecated:
Since version 2.17 all values of scheme except for 1 are deprecated

Returns the currently used channel scheme.
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Returns
Channel scheme

void mergeStreamFiles(str output_filename, str[] input_filenames, int[] channel_offsets, timestamp_t[]
time_offsets, bool overlap_only)

This function merges a list of time tag stream files into one file. The merged stream file can be loaded into the
TimeTaggerVirtual for processing. The file merging combines streams into one with the possibility of specifying
a constant time offset for each input stream file. Additionally, it is possible to specify channel number offset if the
input stream files were recorded from the same channel numbers, for instance, using two Time Tagger devices
The parameters input_filenames, channel_offsets, and time_offsets shall be of equal length.

This function handles the *.ttbin files the same way as the TimeTaggerVirtual::replay().

See also: FileWriter , FileReader , and The TimeTaggerVirtual class .

Note

When merging multiple stream files recorded at different times or from different devices, you have to be aware
of possible time base differences. This function does not rescale the data into a common time base as this
would require additional information and external synchronization signal. If you want to improve the syn-
chronicity of the time base between two devices, please send the reference clock signal to any of the available
inputs of each Time Tagger and set up the software clock TimeTaggerBase::setSoftwareClock().

Parameters

• output_filename – Filename where to store the merge result *.ttbin.

• input_filenames – List of dump files that will be merged.

• channel_offsets – Channel number offset for each *.ttbin file. Useful when input files
have the same channel numbers.

• time_offsets – Time offset for each *.ttbin file in picoseconds.

• overlap_only – If True, then merge only the regions where the time is overlapping.

str getVersion()
Get the version of the Time Tagger software installed.

Returns
Version of the Time Tagger software.

Usage statistics data collection

See also the section Usage Statistics Collection.

void setUsageStatisticsStatus(UsageStatisticsStatus new_status)
This function allows a user to override the system-wide default setting on collection and submission of the usage
statistics data. This function operates within the scope of a current OS user. The system-wide default setting is
given during the installation of the Time Tagger software. Please run the installer again to allow collection and
uploading or to disable the usage statistics.

Parameters
new_status – New status of the usage statistics data collection.

UsageStatisticsStatus getUsageStatisticsStatus()
Get the current status of the usage statistics for the current user. The status is described by the UsageStatistic-
sStatus.
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Returns
Current status of the usage statistics for the current user.

str getUsageStatisticsReport()
This function returns the current state of the usage statistics report as a JSON formatted string. If there is no
report data available or it was submitted just now, the output is a message: Info: No report data available yet. If
you had given your consent earlier and then revoked it, this function will still return earlier accumulated report
data.

Returns
Usage statistics data encoded as JSON string.

7.2.7 Helper classes

class ChannelGate

Public Functions

ChannelGate(channel_t gate_open_channel, channel_t gate_close_channel, GatedChannelInitial initial =
GatedChannelInitial::Open)

This object defines an evaluation gate that is passed to a measurement class. The time-tag stream itself is
not modified but sections of the stream can be excluded from the evaluation. In contrast to time-tag stream
based gating (see GatedChannel), this concept allows the measurement class to calculate the correct data
normalization.

Parameters

• gate_open_channel – Number of the channel that opens the evaluation gate.

• gate_close_channel – Number of the channel that closes the evaluation gate.

• initial – Initial state of the evaluation gate.

7.3 TimeTagger classes
The Time Tagger classes represent the different time-tag sources for your measurements and analysis. These objects
are created by factory functions in the Time Tagger library:

Time Tagger
The TimeTagger represents a hardware device and allows access to hardware settings. To connect
to a hardware Time Tagger and to get a TimeTagger object, use createTimeTagger().

Virtual Time Tagger
The TimeTaggerVirtual allows replaying files created with the FileWriter. To create a
TimeTaggerVirtual object, use createTimeTaggerVirtual().

Network Time Tagger
The TimeTaggerNetwork allows the (remote) access to a Time Tagger made
available via startServer(). The TimeTaggerNetwork object is created with
createTimeTaggerNetwork() which also establishes a client connection to the server.

All these objects share a common interface defined by the TimeTaggerBase and TimeTaggerSource classes. In
addition, hardware-specific methods, for use with TimeTagger and TimeTaggerNetwork objects, are defined in the
TimeTaggerHardware class.
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7.3.1 General Time Tagger features

class TimeTaggerSource
This class defines methods used to configure a source of time tags, being either a TimeTaggerBase object, or
a TimeTagger-like object such as a TimeTaggerServer. All Time Tagger classes implement these methods by
subclassing TimeTaggerBase which itself subclasses TimeTaggerSource.

Subclassed by TimeTaggerBase, TimeTaggerServer

Public Functions

void setInputDelay(channel_t channel, timestamp_t delay)
Convenience method that calls setDelaySoftware() if you use a Time Tagger 20 or the delay is > 2 µs,
otherwise setDelayHardware() is called.

Parameters

• channel – Channel number.

• delay – Delay time in picoseconds.

timestamp_t getInputDelay(channel_t channel)
Convenience method that returns the sum of getDelaySoftware() and getDelayHardware().

Parameters
channel – Channel number.

Returns
Delay time in picoseconds.

void setDelayHardware(channel_t channel, timestamp_t delay)
Sets an artificial delay per channel. The delay can be positive or negative. This delay is applied onboard
the Time Tagger directly after the time-to-digital conversion, so it also affects the Conditional Filter . If
you exceed the maximum hardware delay range, please use setDelaySoftware() instead.

Note

Method is not available for the Time Tagger 20.

Parameters

• channel – Channel number.

• delay – Delay time in picoseconds, the maximum/minimum value allowed is ±2000000
(±2 µs).

timestamp_t getDelayHardware(channel_t channel)
Returns the value of the delay applied onboard the Time Tagger in picoseconds for the specified channel.

Note

Method is not available for the Time Tagger 20.

Parameters
channel – Channel number.
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Returns
Delay time in picoseconds.

timestamp_t[] getDelayHardwareRange(channel_t channel)
Returns a vector containing the minimum and the maximum allowable values for the hardware input delay
for the specified channel.

Parameters
channel – Channel number.

Returns
Minimum and maximum hardware input delay in picoseconds.

void setDelaySoftware(channel_t channel, timestamp_t delay)
Sets an artificial delay per channel. The delay can be positive or negative. This delay is applied on the
computer, so it does not affect onboard processes such as the Conditional Filter.

Note

This method has the best performance when less than 100 events arrive within the time of the largest
delay set. For example, if the rate over all channels used is 10 MTags/s, the signal can be delayed
efficiently up to 10 µs. For larger delays, please consider using DelayedChannel instead.

Parameters

• channel – Channel number.

• delay – Delay time in picoseconds.

timestamp_t getDelaySoftware(channel_t channel)
Returns the value of the delay applied on the computer in picoseconds for the specified channel.

Parameters
channel – Channel number.

Returns
Delay time in picoseconds.

timestamp_t setDeadtime(channel_t channel, timestamp_t deadtime)
Sets the dead time of a channel in picoseconds. The minimum dead time is defined by the internal clock
period, which is 6 ns for the Time Tagger 20, 2 ns for the Time Tagger Ultra, and 1.333 ns for the Time
Tagger X. For the Time Tagger 20, the requested dead time will be rounded to the nearest multiple of the 6
ns clock cycle. The other models allow for arbitrary dead times greater than the respective minimum dead
time.

As the dead time passed as an input might be altered to the rounded value, the rounded value will be
returned. The maximum dead time is 393 µs for the Time Tagger 20, 2147 µs for the Time Tagger Ultra,
and 716 µs for the Time Tagger X. Larger dead times will result in an exception.

Note

The specified dead time is 2.1 ns for Time Tagger Ultra and 1.5 ns for Time Tagger X. With the default
setting of the hardware dead time filter, an event arriving between the default hardware dead time and
the specified dead time after the last event of that channel might be dropped (e.g., an event arriving
between 2 ns and 2.1 ns after the last event on that channel for Time Tagger Ultra).
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Parameters

• channel – Channel number.

• deadtime – Dead time value in picoseconds.

Returns
Resulting dead time in picoseconds, that might be rounded to the nearest valid value (mini-
mum dead time or multiple of the clock period).

timestamp_t getDeadtime(channel_t channel)
Returns the dead time value for the specified channel.

Parameters
channel – Channel number.

Returns
Dead time value in picoseconds.

timestamp_t[] getDeadtimeRange(channel_t channel)
Returns a vector containing the minimum and the maximum allowable values for the dead time for the
specified channel.

Parameters
channel – Channel number.

Returns
Minimum and maximum dead time values in picoseconds.

void setConditionalFilter(channel_t[] trigger, channel_t[] filtered)
Activates or deactivates the conditional filter. Time tags on the filtered channels are discarded unless they
were preceded by a time tag on one of the trigger channels, which reduces the data rate. More details can
be found in the In-Depth Guide: Conditional Filter .

Parameters

• trigger – List of channel numbers

• filtered – List of channel numbers

void clearConditionalFilter()
Deactivates the event filter. Equivalent to setConditionalFilter([], []).

channel_t[] getConditionalFilterTrigger()
Returns the collection of trigger channels for the conditional filter.

Returns
List of channel numbers.

channel_t[] getConditionalFilterFiltered()
Returns the collection of channels to which the conditional filter is currently applied.

Returns
List of channel numbers.

void setEventDivider(channel_t channel, int divider)
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Applies an event divider filter with the specified factor to a channel, which reduces the data rate. Only
every n-th event from the input stream passes through the filter, as shown in the image. The divider is a 16
bit integer, so the maximum value is 65535.

Note that if the conditional filter is also active, the conditional filter is applied first.

Also note that the event divider is not supported on the TimeTaggerVirtual.

Parameters

• channel – Physical channel number.

• divider – Divider factor, min. 1 and max. 65535.

int getEventDivider(channel_t channel)
Gets the event divider filter factor for the given channel.

See setEventDivider for further details.

Parameters
channel – Physical channel number.

Returns
Divider factor value.

int getOverflows()
Returns the number of overflows (missing blocks of time tags due to limited USB data rate) that occurred
since start-up or last call to clearOverflows().

Returns
Number of overflows.

int getOverflowsAndClear()
Returns the number of overflows that occurred since start-up and sets them to zero (see,
clearOverflows()).

Returns
Number of overflows.

void clearOverflows()
Sets the overflow counter to zero.

void setReferenceClock(channel_t clock_channel, float clock_frequency = 10e6, float time_constant =
1e-3, channel_t synchronization_channel = CHANNEL_UNUSED, timestamp_t
synchronization_offset = 0, bool wait_until_locked = true)

Defines in software one of the input channels as the base clock for all channels. This feature sets up a
software phase-locked loop (PLL) and rescales all incoming time-tags according to the time base provided
by the clock_channel. This clock frequency alignment is called “syntonization”.

The Reference Clock is able to handle signals decimated by setEventDivider() and it is possible
to recover the dismissed tags in software. The new time base is characterized by “ideal clock tags”
separated by exactly the defined clock_period = 1E12/clock_frequency. For measurements, you
can use both, rescaled and ideal clock tags. The injection of ideal clock tags can be controlled by
setConditionalFilter(), by default all tags are injected.
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While the PLL is enabled but not locked, the time base of the instrument is invalid. In this case, the time-
tag stream changes to the overflow mode. This means that after a call to setReferenceClock(), you will
typically find overflows because the PLL starts from an unlocked state.

Beyond the clock syntonization, the Reference Clock can also take a synchronization_channel to align the
absolute time base of the Time Tagger to an external time base. Currently, the synchronization channel
expects one pulse per second (1PPS) that is aligned precisely to a UTC second. The corresponding UTC
second is retrieved from the computer’s system clock which requires the use of a time standard via PTP.
The synchronization feature is important for merging time-tag streams in the TimeTaggerNetwork .

Warning

For the Time Tagger 20, a phase error of 200 ps needs to be considered when using the reference clock.

Parameters

• clock_channel – The physical channel that is used as reference clock input.

• clock_frequency – The frequency of the reference clock. The value should not deviate
from the real frequency by more than a few percent. If the Event Divider is active on this
channel, you still provide the original input frequency. Default: 10E6, for 10 MHz.

• time_constant – The time period to average over in seconds. The suppression of dis-
cretization noise is improved by a higher time_constant. If the value is too large, however,
this will result in increased phase jitter due to the drift of the internal clock or the applied
software clock signal. Default: 1E-3, for 1 ms.

• synchronization_channel – The physical channel that provides a 1PPS signal repre-
senting a UTC second.

• synchronization_offset – Sets a manual offset to the computer’s system time in ps.
This is necessary if the system time is badly aligned to the 1PPS signal of the synchroniza-
tion system. As this might change from start-up to start-up, it is recommended to synchro-
nize both, the synchronization system and the computer’s system time, to UTC. Default is
0.

• wait_until_locked – Blocks the execution until the software clock is locked. Throws
an exception on locking errors. All locking log messages are filtered while this call is
executed. Default: True

void disableReferenceClock()
Disable the software-defined reference clock.

ReferenceClockState getReferenceClockState()
Provides an object representing the current state of the software-defined reference clock. This includes the
configuration parameters as well as dynamic values generated based on the incoming signal.

class TimeTaggerBase : public virtual TimeTaggerSource
The TimeTaggerBase class defines methods and functionality present in all Time Tagger objects. Every mea-
surement and virtual channel instance requires a reference to a TimeTaggerBase object to associate with.

Subclassed by TimeTagger, TimeTaggerNetwork, TimeTaggerVirtual
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Public Functions

void setSoftwareClock(channel_t input_channel, float input_frequency = 10e6, float averaging_periods =
1000, bool wait_until_locked = true)

Defines in software one of the input channels as the base clock for all channels. This feature sets up a soft-
ware phase-locked loop (PLL) and rescales all incoming time-tags according to the software clock defined.
The PLL provides a new time base with “ideal clock tags” separated by exactly the defined clock_period.
For measurements, you can use both, rescaled and ideal clock tags.

While the PLL is not locked, the time base of the instrument is invalid. In this case, the time-tag stream
changes to the overflow mode. This means that after every call to setSoftwareClock(), you will find
overflows because the PLL starts from an unlocked state.

Warning

It is often useful to apply this feature in combination with setEventDivider() on the input_channel.
The values of input_frequency and averaging_periods correspond to the transferred time-tags, not to
the physical frequency. Changing the divider independently after setting up the software clock may
lead to a failure of the locking process. Do not add input_channel to the list of filtered channels in
setConditionalFilter().

Warning

For the Time Tagger 20, a phase error of 200 ps needs to be considered when using the software clock.

Parameters

• input_channel – The physical channel that is used as software clock input.

• input_frequency – The frequency of the software clock after application of
setEventDivider() (e.g. a 10 MHz clock signal with divider = 20 has input_frequency
= 500 000). The value should not deviate from the real frequency by more than a few
percent. Default: 10E6, for 10 MHz.

• averaging_periods – The number of cycles to average over. The suppression of dis-
cretization noise is improved by a higher averaging_periods. If the value is too large,
however, this will result in increased phase jitter due to the drift of the internal clock or the
applied software clock signal. Default: 1000.

• wait_until_locked – Blocks the execution until the software clock is locked. Throws
an exception on locking errors. All locking log messages are filtered while this call is
executed. Default: True.

void disableSoftwareClock()
Disable the software clock.

Deprecated:
use disableReferenceClock

SoftwareClockState getSoftwareClockState()
Provides an object representing the current software clock state. This includes the configuration parameters
as well as dynamic values generated based on the incoming signal.
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Deprecated:
use getReferenceClock

Returns
An object that contains the current state of the software clock.

int getFence(bool alloc_fence = true)
Generate a new fence object, which validates the current configuration and the current time. This fence is
uploaded to the earliest pipeline stage of the Time Tagger. Waiting on this fence ensures that all hardware
settings, such as trigger levels, channel registrations, etc., have propagated to the FPGA and are physically
active. Synchronizes the Time Tagger internal memory so that all tags arriving after the waitForFence()
call were actually produced after the getFence() call. The waitForFence() function waits until all
tags, which are present at the time of the function call within the internal memory of the Time Tagger, are
processed. This call might block to limit the number of active fences.

Parameters
alloc_fence – Optional. If False, a reference to the most recently created fence will be
returned instead. Default: True.

Returns
The allocated fence.

bool waitForFence(int fence, int timeout = -1)
Wait for a fence in the data stream. See getFence() for more details.

Parameters

• fence – Fence object, which shall be waited on.

• timeout – Optional. Timeout in milliseconds. Negative means no timeout, zero returns
immediately. Default: -1.

Returns
True if the fence has passed, false on timeout.

bool sync(int timeout = -1)
Ensures that all hardware settings, such as trigger levels, channel registrations, etc., have propagated to the
FPGA and are physically active. Synchronizes the Time Tagger internal memory, so that all tags arriving
after a sync call were actually produced after the sync call. The sync function waits until all tags, which
are present at the time of the function call within the internal memory of the Time Tagger, are processed.
It is equivalent to waitForFence().

The operation of this method on the TimeTaggerNetwork depends on the server access mode. If
the TimeTaggerNetwork is connected to the Time Tagger server started in AccessMode::Control
or AccessMode::SynchronousControl, the synchronization will be done all way through the
server and the hardware. If the Time Tagger server started in AccessMode::Listen or
AccessMode::SynchronousListen, the client will be able to synchronize only with the server but will
not synchronize with the Time Tagger Hardware. However, if a USB synchronization fence was created by
the server side, the clients will also see it.

See also:

• getFence(), waitForFence(), TimeTagger::startServer(), AccessMode

• Synchronization of the Time Tagger pipeline

Parameters
timeout – Optional. Timeout in milliseconds. Negative means no timeout, zero returns
immediately. Default: -1.
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Returns
True if the synchronization was successful, false on timeout.

channel_t getInvertedChannel(channel_t channel)
Returns the channel number for the inverted edge of the channel passed in via the channel parameter. In
case the given channel has no inverted channel, CHANNEL_UNUSED is returned.

Parameters
channel – Channel number.

Returns
The inverted channel number.

bool isUnusedChannel(channel_t channel)
Returns true if the passed channel number is CHANNEL_UNUSED.

Parameters
channel – Channel number.

Returns
True/False.

str getConfiguration()
Returns a JSON formatted string (dict in Python) containing complete information on the Time Tagger
settings. It also includes descriptions of measurements and virtual channels created on this Time Tagger
instance.

Returns
Time Tagger settings and currently existing measurements.

xtra methods

Note

The following xtramethods are mainly for development purposes and may be discontinued in future software
versions without further notice.

void xtra_setAutoStart(bool auto_start)
Configures if the new measurements and virtual channels start automatically upon creation. This is true
by default for all measurements and virtual channels in all TimeTaggers, but disabled by default for the
SynchronizedMeasurements::getTagger() proxy objects.

Warning

Disabling the auto start of new measurements and virtual channels is not recommended for most of the
use cases and requires the user to start all the defined measurements and virtual channels in the correct
order manually, with explicit calls to IteratorBase::start() or IteratorBase::startFor(),

Parameters
auto_start – Select whether the auto start of new measurements and virtual channel is
enable.
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bool xtra_getAutoStart()
Returns whether the auto start of new measurements and virtual channels is enabled.

Returns
The current auto start state of new measurements and virtual channel.

7.3.2 Time Tagger

class TimeTaggerHardware
This class provides the basic methods for configuring TimeTagger hardware, directly via USB or over the network.

Subclassed by TimeTagger, TimeTaggerNetwork, TimeTaggerServer

Public Functions

void setTriggerLevel(channel_t channel, float voltage)
Set the trigger level of an input channel in Volts.

Parameters

• channel – Physical channel number

• voltage – Trigger level in Volts

float getTriggerLevel(channel_t channel)
Returns trigger level for the specified physical channel number.

Parameters
channel – Physical channel number

Returns
The applied trigger voltage level in Volts, which might differ from the input parameter due to
the DAC discretization.

timestamp_t getHardwareDelayCompensation(channel_t channel)
Get the hardware input delay compensation for the given channel in picoseconds. This compen-
sation can be understood as an implicit part of TimeTaggerSource::setDelayHardware() and
TimeTaggerSource::setDelaySoftware(). If your device is able to set an arbitrary delay onboard,
this applies to the hardware delay compensation as well.

Parameters
channel – Physical channel number

Returns
Hardware delay compensation in picoseconds

void setHardwareDelayCompensationActive(bool use_compensation)
Activate the hardware delay compensation of a channel

The physical input delays are calibrated and compensated. However this compensation is implemented
after the conditional filter and so affects its result. This function queries the effective input delay, which
compensates the hardware delay.

Parameters
use_compensation – set compensation state
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void setInputImpedanceHigh(channel_t channel, bool high_impedance)

Sets the input impedance to High-Z for the specified channel. Before createTimeTagger, after
TimeTagger::reset(), and after freeTimeTagger, If not set explicitly to High-Z by setInputImpedance-
High, the input will switch to 50 Ohm by default as soon as the input is used.

# Upon initialization, all inputs are in the High-Z state:
tagger = TimeTagger.createTimeTagger()

# If you want to keep a channel in High-Z, set it right after initialization:
tagger.setInputImpedanceHigh(1, True)

# The Time Tagger will now stay in High-Z on channel 1, channel 2 will switch␣
→˓to 50 Ohm:
cr = TimeTagger.Countrate(tagger, [1, 2])

Note

Method is only available for the Time Tagger X.

Parameters

• channel – Physical channel number.

• high_impedance – True/False.

bool getInputImpedanceHigh(channel_t channel)
Returns whether the input impedance is set to high-Z for the specified channel.

Note

Method is only available for the Time Tagger X.

Parameters
channel – Physical channel number.

Returns
State of high input impedance.

void setInputHysteresis(channel_t channel, int value)
Sets the input hysteresis value for the specified channel. Oscillations of the measured signal within the
hysteresis range around the trigger value are ignored and therefore do not trigger new events. Supported
values are 1 mV, 20 mV, 70 mV. Default input hysteresis value is 20 mV.

Note

Method is only available for the Time Tagger X.

Parameters

• channel – Physical channel number.

• value – Hysteresis voltage value in mV (1, 20, 70).

94 Chapter 7. Application Programming Interface



Time Tagger User Manual, Release 2.18.2.0

int getInputHysteresis(channel_t channel)
Returns the voltage value in mV of the input hysteresis for the specified channel.

Note

Method is only available for the Time Tagger X.

Parameters
channel – Physical channel number.

Returns
Hysteresis voltage value in mV.

void setNormalization(channel_t[] channels, bool state)
Enables or disables Gaussian normalization of the detection jitter. Enabled by default.

Parameters

• channels – List of physical channel numbers.

• state – True/False.

bool getNormalization(channel_t channel)
Returns whether the Gaussian normalization of the detection jitter is enabled for the specified channel.

Parameters
channel – The physical channel to query

Returns
True/False

str getSerial()
Returns the hardware serial number.

Returns
Serial number string.

str getModel()
Returns the model name as string.

Returns
Model name as string

str getPcbVersion()
Returns Time Tagger PCB (Printed circuit board) version.

Returns
PCB version.

float[] getDACRange()
Return a vector containing the minimum and the maximum DAC (Digital-to-Analog Converter) voltage
range for the trigger level.

Deprecated:
Since version 2.18. Please use getTriggerLevelRange() instead.
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Returns
Minimum and maximum voltage, in volts.

float[] getTriggerLevelRange(channel_t channel)
Return a vector containing the minimum and the maximum voltage range for the trigger level of a given
channel.

Parameters
channel – Physical channel number.

Returns
Minimum and maximum voltage for the given channel, in volts.

channel_t[] getChannelList(ChannelEdge type = ChannelEdge::All)
Returns a list of channels corresponding to the given type.

Parameters
type – Limits the returned channels to the specified channel edge type.

Returns
List of channel numbers.

void setHardwareBufferSize(int size)
Sets the maximum buffer size within the Time Tagger. The default value is 64 MTags, but can be changed
within the range of 32 kTags to 512 MTags. Please note that this buffer can only be filled with a total data
rate of up to 500 MTags/s. See also, Synchronization of the Time Tagger pipeline .

Note

Time Tagger 20 uses by default the whole buffer of 8 MTags, which can be filled with a total data rate
of up to 40 MTags/s.

Parameters
size – Buffer size, must be a positive number.

int getHardwareBufferSize()
Returns the maximum buffer size within the Time Tagger.

Returns
Maximum hardware buffer size.

timestamp_t getPsPerClock()
Returns the duration of a clock cycle in picoseconds. This is the inverse of the internal clock frequency.

Returns
The clock period in picoseconds.

void setStreamBlockSize(int max_events, int max_latency)
This option controls the latency and the block size of the data stream. Depending on which of the two
parameters is exceeded first, the block stream size is adjusted accordingly.

Note

The block size will be reduced even further when no new tag arrives within roughly 1-2 µs.
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Parameters

• max_events – Maximum number of events within one block (256 - 32M), default: 1M
events

• max_latency – Maximum latency in milliseconds for constant input rates (1 to 10000),
default: 20 ms.

int getStreamBlockSizeEvents()
Returns the block size of the data stream. See setStreamBlockSize() for further details.

Returns
The maximum number of events within one block.

int getStreamBlockSizeLatency()
Returns the latency of the data stream. See setStreamBlockSize() for further details.

Returns
The maximum latency in milliseconds.

void setTestSignal(channel_t[] channel, bool enabled)
Connects or disconnects the channels with the on-chip uncorrelated signal generator.

Note

When used on a TimeTaggerVirtual object, this method activates a Gaussian signal generator with a 9
ps RMS jitter, on the specified channel. This functionality is primarily for development use and is not
intended for general application.

Parameters

• channel – List of physical channel numbers.

• enabled – True/False

bool getTestSignal(channel_t channel)
Returns true if the internal test signal is activated on the specified channel.

Parameters
channel – Physical channel number.

Returns
True/False.

void setTestSignalDivider(int divider)
Change the frequency of the on-chip test signal.

• For the Time Tagger X, the base frequency is 333.333 MHz and the default divider 375 corresponds to
~890 kCounts/s.

• For the Time Tagger Ultra, the base frequency is 100.800 MHz and the default divider 126 corresponds
to ~800 kCounts/s.

• For the Time Tagger 20, the base frequency is 62.5 MHz and the default divider 74 corresponds to
~850 kCounts/s.
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Parameters
divider – Frequency divisor factor.

int getTestSignalDivider()
Returns the value of test signal division factor.

Returns
The frequency divisor factor.

str getDeviceLicense()
Returns a JSON formatted string (dict in Python) containing license information of the Time Tagger
device, for instance, model, edition, and available channels.

Returns
License information.

str getSensorData()
Prints a JSON formatted string (dict in Python) containing all available sensor data for the given board.
The Time Tagger 20 has no onboard sensors.

Returns
Sensor data.

void disableLEDs(bool disabled)
Disables all channel LEDs and back LEDs.

Note

This feature currently lacks support for disabling the power LED on the Time Tagger X.

Parameters
disabled – True/False.

void setLED(int bitmask)
Manually change the state of the Time Tagger LEDs. The power LED of the Time Tagger 20 cannot be
programmed by software.

Example:

# Turn off all LEDs
tagger.setLED(0x01FF0000)

# Restore normal LEDs operation
tagger.setLED(0)

• 0 -> LED off

• 1 -> LED on

illumination bits

• 0-2: status, rgb - all Time Tagger models

• 3-5: power, rgb - Time Tagger Ultra only

• 6-8: clock, rgb - Time Tagger Ultra only
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• 0 -> normal LED behavior, not overwritten by setLED

• 1 -> LED state is overwritten by the corresponding bit of 0-8

mask bits

• 16-18: status, rgb - all Time Tagger models

• 19-21: power, rgb - Time Tagger Ultra only

• 22-24: clock, rgb - Time Tagger Ultra only

Parameters
bitmask – LED bitmask.

void setSoundFrequency(int freq_hz)
Set the Time Tagger’s internal buzzer to a frequency in Hz.

Parameters
freq_hz – The sound frequency in Hz, use 0 to switch the buzzer off.

void setTimeTaggerNetworkStreamCompression(bool active)
Enables/disables the compression of TimeTags before they are streamed from the server to the clients.

Note

Activation can be helpful for slow network environments (<= 100 MBit/s) if the bandwidth is the lim-
iting factor. For instance, the amount of streamed data of periodic signals is reduced by about a factor
of 2. The compression, on the other hand, leads to increased CPU utilization and is not advantageous
for fast networks (>= 1 GBit/s).

Parameters
active – Flag defining whether the compression is enabled (default: False).

int getChannelNumberScheme()
Fetch the configured numbering scheme for this TimeTagger object.

Please see setTimeTaggerChannelNumberScheme() for details.

class TimeTagger : public virtual TimeTaggerBase, public virtual TimeTaggerHardware
This class provides access to the hardware and exposes methods to control hardware settings, such as trigger
levels or even filters. Behind the scenes, it opens the USB connection, initializes the device and receives and
manages the time-tag-stream.

Public Functions

void reset()
Reset the Time Tagger to the start-up state.

float[] autoCalibration()
Runs an auto-calibration of the Time Tagger hardware using the built-in test signal.

Returns
The list of jitter of each input channel in picoseconds based on the calibration data.
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int[,] getDistributionCount()
Returns the calibration data represented in counts.

Returns
Calibration data in counts.

float[,] getDistributionPSecs()
Returns the calibration data represented in picoseconds.

Returns
Calibration data in picoseconds.

void enableFpgaLink(channel_t[] channels, str destination_mac, FpgaLinkInterface link_interface =
FpgaLinkInterface::SFPP_10GE, bool exclusive = false)

Enable the FPGA link of the Time Tagger X.

Parameters

• channels – List of channels, which shall be streamed over the FPGA link.

• destination_mac – Destination MAC, use an empty string for the broadcast address of
“FF:FF:FF:FF:FF:FF”.

• link_interface – Selects which interface shall be used, default is
FpgaLinkInterface::SFPP_10GE.

• exclusive – Determines if time tags should exclusively be transmitted over Ethernet,
increasing Ethernet performance and avoiding USB issues, default is mixed USB and eth-
ernet.

void disableFpgaLink()
Disable the FPGA link of the Time Tagger X.

void startServer(AccessMode access_mode, channel_t[] channels = channel_t[](), int port = 41101)
Start a Time Tagger server that can be accessed via TimeTaggerNetwork. The server access mode controls
if the clients are allowed to change the hardware parameters. See also: AccessMode.

Throws
RuntimeError – If server is already running.

Parameters

• access_mode – AccessMode in which the server should run. Either control or listen.

• channels – Channels to be streamed. Used only when access_mode=AccessMode.
Listen or access_mode=AccessMode.SynchronousListen.

• port – Port at which this Time Tagger server will be listening on.

void stopServer()
Stops the Time Tagger server if currently running, otherwise does nothing.

bool isServerRunning()
Checks if the server is still running.

Returns
True is server is running and False otherwise.

void setServerAddress(str ip_address)
By default a Time Tagger in server mode will bind to IP address 0.0.0.0, exposing the server via all
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IPv4 addresses of the local machine. This may be undesirable in the presence of multiple network hard-
ware within the same machine. To prevent exposure to multiple networks, the binding IP address may be
configured to refer to specific network hardware.

Parameters
ip_address – The IP address, or hostname.

str getServerAddress()
Gets the IP address, or hostname, to which the Time Tagger server shall bind.

Returns
The IP address, or hostname.

Device independent xtra methods

Note

The following xtramethods are mainly for development purposes and may be discontinued in future software
versions without further notice. The xtra setter methods in this first section are only available for the Time
Tagger Ultra and the Time Tagger X.

void xtra_setAvgRisingFalling(channel_t channel, bool enable)
Configures if the rising and falling events shall be averaged.

This is implemented on the device before any filter like event divider and it does not require to transfer both
events.

They need to be manually delayed to be within a window of +-500 ps of error, else events might get lost.
This method has no side effects on the channel getInvertedChannel(), you can still fetch the original
events there. However if both are configured to return the averaged result, the timestamps will be identical.

Parameters

• channel – The channel, on which the average value shall be returned.

• enable – Select whether the averaging feature is enabled.

bool xtra_getAvgRisingFalling(channel_t channel)
Return the state of the averaging of rising and falling edges.

Parameters
channel – The channel for which the averaging state is returned.

Returns
The current enable state.

void xtra_setHighPrioChannel(channel_t channel, bool enable)
Sets the priority state of a channel. This setting is applied on the hardware before USB transfer.

If a buffer overflow occurs, channels with high-priority state will interrupt the overflow mode and be trans-
mitted as standard time-tags (Tag::Type::TimeTag). Timing information of low-priority channels is
dismissed in overflow mode and only the number of counts is transmitted (Tag::Type::MissedEvents).
A typical application of the high-priority channels is CountBetweenMarkers with high-priority markers. In
this case, the overflow range will be ideally sliced by the markers.
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Warning

Interrupting the overflow mode may break the protection mechanism the overflow mode provides. This
may lead to irreversible loss of events, not only loss of their timing information. High priority should
only be assigned to low-countrate channels, e.g. pixel triggers or similar control events.

Parameters

• channel – The channel on which the high-priority state shall be enabled.

• enable – Select whether high priority is enabled.

bool xtra_getHighPrioChannel(channel_t channel)
Get the priority state of a channel.

Parameters
channel – The channel for which the priority state is returned.

Returns
The current enable state of the high-priority feature on this channel.

TTX-only xtra methods

Note

The following xtramethods are mainly for development purposes and may be discontinued in future software
versions without further notice. The xtra setter methods in this second section are only available for the Time
Tagger X.

void xtra_setAuxOut(int channel, bool enabled)
Enables/Disables the Aux Out signal for the specified Aux channel.

Parameters

• channel – Aux channel number.

• enabled – True/False.

bool xtra_getAuxOut(int channel)
Returns whether the Aux Out signal is enabled for the specified Aux channel.

Parameters
channel – Aux channel number.

Returns
State of the Aux Out signal.

void xtra_setAuxOutSignal(int channel, int divider, float duty_cycle = 0.5)
Sets the signal shape, i.e., duty cycle and frequency, of the Aux out signal for the specified Aux channel.

Parameters

• channel – Aux channel number.

• divider – Divider of the Aux Out base signal frequency (333 MHz).

• duty_cycle – The duty cycle of the aux signal.
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int xtra_getAuxOutSignalDivider(int channel)
Returns the divider for the frequency of the Aux Out signal generator or the specified Aux channel.

Parameters
channel – Aux channel number.

Returns
Divider for the frequency of the Aux Out signal generator,

float xtra_getAuxOutSignalDutyCycle(int channel)
Returns the duty cycle of the Aux Out signal for the specified Aux channel.

Parameters
channel – Aux channel number.

Returns
Duty cycle of the Aux Out signal generator.

float xtra_measureTriggerLevel(channel_t channel)
Measures and returns the applied voltage threshold of the specified channel.

Parameters
channel – Channel number.

Returns
Applied voltage threshold of a channel

void xtra_setClockSource(int source)
Specifies the different clock sources:

• 0 - internal clock

• 1 - external clock 10 Mhz

• 2 - external clock 500 MHz.

Parameters
source – Number of the clock source. Allowed values: 0, 1, 2.

int xtra_getClockSource()
Returns the used clock source:

• -1: auto selecting of below options

• 0: internal clock

• 1: external 10 MHz

• 2: external 500 MHz.

Returns
Number of the clock source.

void xtra_setClockAutoSelect(bool enabled)
Enables/Disables the auto clocking function.

Parameters
enabled – True/False.
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bool xtra_getClockAutoSelect()
Returns whether the auto clocking function is enabled.

Returns
State of auto clocking.

void xtra_setClockOut(bool enabled)
Activates/Deactivates the 10 MHz clock output.

Parameters
enabled – True/False.

7.3.3 The TimeTaggerVirtual class

class TimeTaggerVirtual : public virtual TimeTaggerBase
The TimeTaggerVirtual allows replaying earlier stored time-tag dump files created by the FileWriter. Using the
virtual Time Tagger, you can repeat your experiment data analysis with different parameters or even perform
different measurements.

Here is a minimal code snippet showing how to replay your data setting one measurement:

# Initialize the TimeTaggerVirtual by passing the name of the file to the␣
→˓constructor.
virtual_tagger = TimeTagger.createTimeTaggerVirtual("filename.ttbin")

# Define all the virtual channels and measurements by passing the TimeTaggerVirtual␣
→˓object
# to the tagger argument.
countrate = TimeTagger.Countrate(tagger=virtual_tagger, channels=[1,2])

# Start the replay of the data using the method run()
virtual_tagger.run()

# Wait until all time tags, or the selected chunk of it, are analyzed
virtual_tagger.waitUntilFinished()

# Retrieve the data
data = countrate.getData()

Note

The virtual Time Tagger requires a free software license, which is automatically acquired from the Swabian
Instruments license server when createTimeTagger or createTimeTaggerVirtual is called while a Time Tagger
is attached. Once received, the license is permanently stored on this PC and the Virtual Time Tagger will
work without Time Tagger hardware attached.

Public Functions

int[] run(float speed = -1.0)
Start the replay at given speed factor. A value of speed=1.0 will replay at a real-time rate. All speed values
< 0.0 will replay the data as fast as possible but stops at the end of all data. If no file for replay is queued,
speed < 0.0 is replaced by speed = 1.0 for simulations. This automatic speed selection is also the default
value. Extreme slow replay speed between 0.0 and 0.1 is not supported.
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Parameters
speed – Replay speed factor.

Returns
IDs of the queued files.

int replay(str file, timestamp_t begin = 0, timestamp_t duration = -1, bool queue = true)

Deprecated:
Since version 2.18. Please use createTimeTaggerVirtual and run()/appendFile() instead.

Replay a dump file specified by its path file or add it to the replay queue. If the flag queue is false, the
current queue will be discarded and file will be replayed immediately. The file parameter can specify a
header file or single specific file as shown in the following example.

See also: FileWriter, FileReader, and mergeStreamFiles().

Warning

Replaying data in small chunks is not recommended for long recordings. Each replay() call reads
the file from the beginning up to the specified begin, even though only the data between begin and
begin + duration is processed. This leads to significant overhead for chunks with higher begin values.
Replaying the whole file at once is more efficient.

Parameters

• file – The file to be replayed.

• begin – Duration in picoseconds to skip at the beginning of the file. A negative time will
generate a pause in the replay.

• duration – Duration in picoseconds to be read from the file. duration=-1 will replay
everything. (default: -1)

• queue – flag if this file shall be queued. (default: True)

Returns
ID of the queued file.

void stop()
This method stops the current file and clears the replay queue.

int appendFile(str filename, timestamp_t begin = 0, timestamp_t duration = -1, bool clear = false)
Add a new file to the queue of files to be replayed. If the file includes channels that are not present in
the initial file passed to createTimeTaggerVirtual, these channels will be ignored during replay and are not
accessible by measurements.

Parameters

• filename – The name of the file to be replayed.

• begin – Duration in picoseconds to skip at the beginning of the file. A negative time will
generate a pause in the replay.

• duration – Duration in picoseconds to be read from the file. duration=-1 will replay
everything. (default: -1)

• clear – If True, the current queue is cleared and the given file starts a new queue. (default:
False, i.e. append to existing queue)
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Returns
ID of the queued file.

bool waitForCompletion(int ID = 0, int timeout = -1)

Deprecated:
Since version 2.18. Use Please waitUntilFinished() instead.

Blocks the current thread until the replay is completed.

bool waitUntilFinished(int ID = 0, int timeout = -1)
Blocks the current thread until the replay is completed.

This method blocks the current execution and waits until the given file has finished its replay. If no ID is
provided, it waits until all queued files are replayed.

This function does not block on a zero timeout. Negative timeouts are interpreted as infinite timeouts.

Warning

Calling waitUntilFinished() on a paused timebase, such as before calling run(), will block the
current thread indefinitely.

Parameters

• ID – Selects which file to wait for. (default: 0)

• timeout – Timeout in milliseconds.

Returns
True if the file is complete, false on timeout.

void setReplaySpeed(float speed)

Deprecated:
Since version 2.18. Please use run() instead.

Configures the speed factor for the virtual tagger. A value of speed=1.0 will replay at a real-time rate. All
speed values < 0.0 will replay the data as fast as possible but stops at the end of all data. This is the default
value. Extreme slow replay speed between 0.0 and 0.1 is not supported.

Parameters
speed – Replay speed factor.

float getReplaySpeed()
Returns the current speed factor. Please see also setReplaySpeed() for more details.

Returns
The replay speed factor

7.3.4 The TimeTaggerNetwork class
In the Time Tagger software version 2.10, we have introduced a way of sending the time-tag stream to other applications
and even remote computers for independent processing. We call this feature Network Time Tagger. You can use it
with any Time Tagger hardware device by starting the time-tag stream server with startServer(). Once the server
is running, the clients can connect to it by calling createTimeTaggerNetwork() and specifying the server address.
Starting with version 2.18, a TimeTaggerNetwork client can connect to multiple servers and merge their time tag streams,
provided the servers are synchronized (e.g. using the White Rabbit protocol). Once the servers are running, the clients
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can connect to them by calling createTimeTaggerNetwork() and specifying the servers addresses. A client can be
any computer that can access the servers over the network or another process on the same computer. Servers and clients
can run on different operating systems or use different programming languages.

Note on Performance

The Network Time Tagger server sends a time tag stream in a compressed format requiring about 4 bytes per time
tag. Every client receives the data only from the channels required by the client. The maximum achievable data
rate will depend on multiple factors, like server and client CPU performance, operating system, network adapter
used, and network bandwidth, as well as the whole network infrastructure.

In a 1 Gbps Ethernet network, it is possible to achieve about 26 MTags/second of the total outgoing data rate from
the server. Note that this bandwidth is shared among all clients connected. Likewise, a 10 Gbps Ethernet network
allows reaching higher data rates while having more clients. In our tests, we reached up to 40 MTags/s per client.

When you run the server and the client on the same computer, the speed of the network adapters installed on your
system becomes irrelevant. In this case, the operating system sends the data directly from the server to the client.

class TimeTaggerNetwork : public virtual TimeTaggerBase, public virtual TimeTaggerHardware
The TimeTaggerNetwork represents a client-side of the Network Time Tagger and provides access to the Time
Tagger server. A server can be created on any physical Time Tagger by calling TimeTagger::startServer. The
TimeTaggerNetwork object is created by calling createTimeTaggerNetwork.

Note

Although the TimeTaggerNetwork formally inherits from TimeTaggerBase, almost all methods of
the hardware TimeTagger are available on the client (except for TimeTagger::startServer() and
TimeTagger::stopServer()). These redundant methods are not listed in this section. A call to a method
that exists on TimeTagger will be forwarded to the server. When using the TimeTaggerNetwork with multi-
ple servers, these forwarded method calls are always directed to the first connected server. An exception is
TimeTaggerHardware::getChannelList(), which is handled on the client and returns all channels avail-
able across all connected servers. To extract information or interact with a specific server, use getServer()
to access a TimeTaggerServer object. Some methods on TimeTaggerNetwork offer similar functionality to
those on the hardware TimeTagger, but are implemented on the client side and can be recognized by the
suffix Client. If the server is running in AccessMode::Listen or AccessMode::SynchronousListen
and a method call forwarded to the server would cause setting changes on the server-side, the call will raise
an exception on the client. This scheme of forwarding may lead to unexpected behavior: If the server is
started in AccessMode::Listen or AccessMode::SynchronousListen with a restricted set of channels
and you call TimeTaggerHardware::getChannelList() on the client side, not all channels returned by
this method can be accessed. You can request the list of accessible channels from the server with getTimeTag-
gerServerInfo.

Public Functions

bool isConnected()
Check if the Network Time Tagger is currently connected to a server.

Returns
True/False.

void setDelayClient(channel_t channel, timestamp_t time)
Sets an artificial software delay per channel on the client side. To specify it on the server side, see
setDelaySoftware() or setDelayHardware(). The latter is not available for the Time Tagger 20. This
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delay will be applied only on this object and will not affect the server settings or delays at any other clients
connected to the same Time Tagger server.

Parameters

• channel – The channel number.

• time – Delay time in picoseconds.

timestamp_t getDelayClient(channel_t channel)
Returns the value of the delay applied on the client-side in picoseconds for the specified channel.

Parameters
channel – Channel number.

Returns
Input delay in picoseconds.

int getOverflowsClient()
If the server is not able to send all the time-tags to the client, e.g. due to limited network bandwidth, the
time-tag stream switches to the overflow mode. This means that the client might experience additional
overflow events that are not originating from the hardware. This counter counts all missing blocks of time
tags occurred in all the hardware devices and on the network since the client connection or last call to
clearOverflowsClient() or getOverflowsAndClearClient().

Returns
The value of the client-side overflow counter.

int getOverflowsAndClearClient()
The same as getOverflowsClient() but also clears the client-side counter. See
getOverflowsClient() for more information on client-side overflows.

void clearOverflowsClient()
Clears the overflow counter on the client-side. A call to getOverflows() will return the information as it
is available on the server. See getOverflowsClient() for more information on client-side overflows.

TimeTaggerServer getServer(str ip_address)

Parameters
ip_address – the IP address, or hostname, of the desired TimeTagger server.

Throws
ValueError – if ip_address does not match an address used in the call to createTimeTagger-
Network().

Returns
a TimeTaggerServer object, for configuration and control purposes.

TimeTaggerServer[] getServers()

Returns
a list of pointers to all TimeTaggerServer objects making up the TimeTaggerNetwork
client.

The TimeTaggerServer class contains all relevant control methods present in TimeTaggerBase and
TimeTaggerHardware.

TimeTaggerServer objects allow control of a TimeTagger in server mode, provided has been created with
AccessMode::Control privileges. However, unlike TimeTaggerBase, TimeTaggerServer cannot be used to per-
form measurements.
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class TimeTaggerServer : public virtual TimeTaggerHardware, public virtual TimeTaggerSource
Control and configure individual TimeTagger servers via a TimeTaggerNetwork object.

Public Functions

str getAddress()

Returns
the IP address, or hostname, of the server object.

AccessMode getAccessMode()

Returns
the AccessMode of the underlying TimeTagger server.

channel_t getClientChannel(channel_t server_channel)

Returns
the channel number on the TimeTaggerNetwork object corresponding to server_channel.

7.3.5 Additional classes

struct ReferenceClockState

Configuration State

timestamp_t clock_period
The rounded clock period matching the input frequency set in
TimeTaggerSource::setReferenceClock().

channel_t clock_channel
The input channel of the periodic clock signal set in TimeTaggerSource::setReferenceClock().

channel_t synchronization_channel
The 1 pulse per second channel representing the (UTC) second
TimeTaggerSource::setReferenceClock().

channel_t ideal_clock_channel
A virtual channel number to receive the ideal clock tags. During a locking period, these tags are separated
by clock_period by definition. To receive the rescaled measured clock tags, use clock_channel.

float averaging_periods
The averaging periods set in TimeTaggerBase::setReferenceClock().

timestamp_t synchronization_offset
The manual offset to the computer’s system time in ps. This is necessary if the system time is badly aligned
to the 1PPS signal of the synchronization system.

bool enabled
Indicates whether the reference clock is active or not.
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int event_divider
The event divider of the clock_channel.

Runtime Information

Beyond the configuration state, the object provides current runtime information of the software clock:

bool is_locked
Indicates whether the PLL of the software clock was able to lock to the input signal.

bool is_synchronized
Indicates whether the absolute timebase is aligned to the synchronization_channel.

int error_counter
Amount of locking errors since the last TimeTaggerBase::setReferenceClock() call.

timestamp_t last_ideal_clock_event
Timestamp of the last ideal clock event in picoseconds.

float period_error
Current deviation of the measured clock period from the ideal period given by clock_period.

float phase_error_estimation
Current root of the squared differences of clock_input timestamps and ideal clock timestamps. This value
includes the discretization noise of the clock_input channel.

struct SoftwareClockState
The SoftwareClockState object contains the current configuration state:

Configuration State

timestamp_t clock_period
The rounded clock period matching the input frequency set in TimeTaggerBase::setSoftwareClock().

channel_t input_channel
The input channel of the software clock set in TimeTaggerBase::setSoftwareClock().

channel_t ideal_clock_channel
A virtual channel number to receive the ideal clock tags. During a locking period, these tags are separated
by clock_period by definition. To receive the rescaled measured clock tags, use clock_channel.

float averaging_periods
The averaging periods set in TimeTaggerBase::setSoftwareClock().

bool enabled
Indicates whether the software clock is active or not.
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Runtime Information

Beyond the configuration state, the object provides current runtime information of the software clock:

bool is_locked
Indicates whether the PLL of the software clock was able to lock to the input signal.

int error_counter
Amount of locking errors since the last TimeTaggerBase::setSoftwareClock() call.

timestamp_t last_ideal_clock_event
Timestamp of the last ideal clock event in picoseconds.

float period_error
Current deviation of the measured clock period from the ideal period given by clock_period.

float phase_error_estimation
Current root of the squared differences of clock_input timestamps and ideal clock timestamps. This value
includes the discretization noise of the clock_input channel.

7.4 Virtual Channels
Virtual channels are software-defined channels as compared to the real input channels. Virtual channels can be under-
stood as a stream flow processing units. They have an input through which they receive time-tags from a real or another
virtual channel and output to which they send processed time-tags.

Virtual channels are used as input channels to the measurement classes the same way as real channels. Since the
virtual channels are created during run-time, the corresponding channel number(s) are assigned dynamically and can
be retrieved using getChannel() or getChannels() methods of virtual channel object.

7.4.1 Available virtual channels

Note

In MATLAB, the Virtual Channel names have common prefix TT*. For example: Combiner is named as
TTCombiner. This prevents possible name collisions with existing MATLAB or user functions.

Coincidence
Detects coincidence clicks on two or more channels within a given time window.

Coincidences
Detects coincidence clicks on multiple channel groups within a given time window.

Combinations
Detects coincidence clicks on all possible combinations of given channels within a given time window, preceded
and followed by two guard windows of the same width without any events on these channels.

Combiner
Merges events from multiple channels into a single channel.

ConstantFractionDiscriminator
Detects rising and falling edges of an input signal and returns the average time.
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DelayedChannel
Creates a delayed replica of an input channel.

EventGenerator
Generates a signal pattern for each trigger event.

FrequencyMultiplier
Multiplies the frequency of a periodic signal on a channel.

GatedChannel
Passes input signals only while the gate is open, defined by start and stop trigger channels.

TriggerOnCountrate
Generates an event when the count rate of a given channel crosses given threshold value.

7.4.2 Common methods
VirtualChannel.getChannel()

VirtualChannel.getChannels()

Returns the channel number(s) corresponding to the virtual channel(s). Use this channel number the very same
way as the channel number of physical channel, for example, as an input to a measurement class or another virtual
channel.

Important

Virtual channels operate on the time tags that arrive at their input. These time tags can be from rising or
falling edges of the physical signal. However, the virtual channels themselves do not support such a concept
as an inverted channel.

getConfiguration()

Returns configuration data of the virtual channel object. The configuration includes the name, values of
the current parameters and the channel numbers. Information returned by this method is also provided with
getConfiguration().

Returns
Configuration data of the virtual channel object.

Return type
dict

7.4.3 Coincidence

class Coincidence : public Coincidences
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Detects coincidence clicks on two or more channels within a given window. Every time a coincidence is detected
on the input channels (AND logic), Coincidence emits a tag on the virtual channel. The timestamp assigned
to the coincidence on the virtual channel can be set using the parameter timestamp. By default, the timestamp
from the last event received to complete the coincidence is used.

See all common methods

Public Functions

Coincidence(TimeTaggerBase tagger, channel_t[] channels, timestamp_t coincidenceWindow = 1000,
CoincidenceTimestamp timestamp = CoincidenceTimestamp::Last)

Parameters

• tagger – Time Tagger object instance.

• channels – List of channels on which coincidence will be detected in the virtual channel.

• coincidenceWindow – Maximum time between all events for a coincidence in picosec-
onds (default: 1000).

• timestamp – Type of timestamp for the virtual channel (default: Last).

7.4.4 Coincidences

class Coincidences : public IteratorBase

Detects coincidence clicks on multiple channel groups within a given window. If several different coincidences
are required with the same window size, Coincidences provides better performance compared to multiple
virtual Coincidence channels. One object of the Coincidence class is limited to 64 unique channels in the
list of channel groups (coincidenceGroups).

Example code:
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from TimeTagger import Coincidence, Coincidences, CoincidenceTimestamp,␣
→˓createTimeTagger
tagger = createTimeTagger()

coinc = Coincidences(tagger, [[1,2], [2,3,5]], coincidenceWindow=10000,␣
→˓timestamp=CoincidenceTimestamp.ListedFirst)
coinc_chans = coinc.getChannels()
coinc1_ch = coinc_chans[0] # double coincidence in channels [1,2] with timestamp␣
→˓of channel 1
coinc2_ch = coinc_chans[1] # triple coincidence in channels [2,3,5] with timestamp␣
→˓of channel 2

# or equivalent but less performant
coinc1 = Coincidence(tagger, [1,2], coincidenceWindow=10000,␣
→˓timestamp=CoincidenceTimestamp.ListedFirst)
coinc2 = Coincidence(tagger, [2,3,5], coincidenceWindow=10000,␣
→˓timestamp=CoincidenceTimestamp.ListedFirst)
coinc1_ch = coinc1.getChannel() # double coincidence in channels [1,2] with␣
→˓timestamp of channel 1
coinc2_ch = coinc2.getChannel() # triple coincidence in channels [2,3,5] with␣
→˓timestamp of channel 2

See all common methods

Note

Only C++ and python support jagged arrays (array of arrays, like uint[][]) which are required to combine
several coincidence groups and pass them to the constructor of the Coincidences class. Hence, the API
differs for Matlab, which requires a cell array of 1D vectors to be passed to the constructor (see Matlab
examples provided with the installer). For LabVIEW, a CoincidencesFactory-Class is available to create a
Coincidences object, which is also shown in the LabVIEW examples provided with the installer).

Subclassed by Coincidence

Public Functions

Coincidences(TimeTaggerBase tagger, channel_t[][] coincidenceGroups, timestamp_t coincidenceWindow,
CoincidenceTimestamp timestamp = CoincidenceTimestamp::Last)

Parameters

• tagger – Time Tagger object instance.

• coincidenceGroups – List of channel groups on which coincidence will be detected in
the virtual channel.

• coincidenceWindow – Maximum time between all events for a coincidence in picosec-
onds.

• timestamp – Type of timestamp for the virtual channel (default: Last).
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7.4.5 Combinations

class Combinations : public IteratorBase

A combination is a group of clicks on a set of channels within a given time window. This time window is
surrounded by two guard windows of the same width. These guard windows do not contain any events on the
channels being monitored.

The heralding guard window precedes the first click in the combination. The following guard window starts at
the time of the last event within the combination window. If there is a click on one of the monitored channels
within the guard windows, no combination event is generated. A new combination window then starts with the
next click after an empty guard window.

Every time a combination is detected on the monitored channels, Combinations emits a tag on the corresponding
virtual channel. The timestamp on this virtual channel is the time of the last event included in the combination.
Given𝑁 input channels to be monitored, there will be 2𝑁−1 possible combinations, each having a corresponding
virtual channel number.

In addition, 𝑁 extra virtual channels called SumChannels are created. This class emits a click on the n-th of
these channels on each n-fold combination, regardless of the channels that contributed to the combination. For
instance, this is useful for pseudo-photon-number-resolution with detector arrays.

See all common methods

Note

Multiple events on the same channel within one time window are counted as one.
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Public Functions

Combinations(TimeTaggerBase tagger, channel_t[] channels, timestamp_t window_size)

Parameters

• tagger – Time Tagger object instance.

• channels – List of channels on which the combinations will be detected.

• window_size – Maximum time between all events to make a combination, minimum time
without any event detected before and after the combination window, expressed in picosec-
onds.

channel_t getChannel(channel_t[] input_channels)
Returns the virtual channel number corresponding to the combination formed by the given set of input
channels.

Warning

The Combinations class enables the virtual channel corresponding to a specific combination of in-
put channels only after an explicit call to getChannel(). This is essential to manage computational
demands, as the number of possible combinations increases exponentially with the number of input
channels.

Parameters
input_channels – List of channels forming the combination monitored by the returned
virtual channel.

Returns
Virtual channel number monitoring the combination.

channel_t[] getChannels(channel_t[][] list_of_input_channel_sets)
Returns a list of virtual channel numbers corresponding to the combinations formed by the given list of sets
of input channels.

Warning

This method can quickly increase the computational demands of the Combinations class, as all re-
turned virtual channels are automatically enabled.

Parameters
list_of_input_channel_sets – List of sets of channels forming the combination moni-
tored by the returned virtual channel.

Returns
List of virtual channel numbers monitoring the set of combinations.

channel_t[] getCombination(channel_t virtual_channel)
Returns the set of input channels forming a combination event on the given virtual channel virtual_channel.

Parameters
virtual_channel – Virtual channel storing the clicks from the combination formed by the
returned channels.
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Returns
List of channels forming the combination monitored by the input virtual channel.

channel_t getSumChannel(int n_channels)
Returns the virtual channel number on which an event is generated when any combination of exactly
n_channels clicks is detected within the window_size.

Parameters
n_channels – Length of the combinations monitored by the returned virtual channel.

Returns
Virtual channel number monitoring all combinations of n_channel clicks.

7.4.6 Combiner

class Combiner : public IteratorBase

Merges two or more channels into one. Every time an event is detected on any of the input channels (OR logic),
Combiner emits a tag on the corresponding virtual channel.

See all common methods

Public Functions

Combiner(TimeTaggerBase tagger, channel_t[] channels)

Parameters

• tagger – Time Tagger object instance.

• channels – List of channels to be combined into a single virtual channel.

7.4.7 ConstantFractionDiscriminator

class ConstantFractionDiscriminator : public IteratorBase
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Constant Fraction Discriminator (CFD) detects rising and falling edges of an input pulse and returns the average
time of both edges. This is useful in situations when precise timing of the pulse position is desired for the pulses
of varying durations and amplitudes.

For example, the figure above shows four input pulses separated by 15 nanoseconds. The first two pulses have
equal widths but different amplitudes, the middle two pulses have equal amplitude but different durations, and
the last pulse has a duration longer than the search_window and is therefore skipped. For such input signal, if
we measure the time of the rising edges only, we get an error in the pulse positions, while with CFD this error is
eliminated for symmetric pulses.

See all common methods

Note

The virtual CFD requires the time tags of the rising and falling edge. This leads to:

• The transferred data of the input channel is twice the regular input rate.

• When you shift the signal, e.g., via TimeTaggerBase::setInputDelay(), you have to shift both
edges.

• When you use the conditional filter, apply the trigger from both channels.

In addition, you may encounter data rate limitations due the computational complexity of this virtual channel.
Consider using TimeTagger::xtra_setAvgRisingFalling() for similar functionality when the varia-
tion between pulse durations is small. There, the computations are performed on the Time Tagger hardware
instead of on your PC, and only half the data rate needs to be transferred for the same result.

Public Functions

ConstantFractionDiscriminator(TimeTaggerBase tagger, channel_t[] channels, timestamp_t
search_window)

Parameters

• tagger – Time Tagger object instance.

• channels – List of channels on which to perform the CFD. Specify rising edges only;
corresponding falling edges will be registered automatically.

• search_window – Maximum pulse duration, in picoseconds, for detection.
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7.4.8 DelayedChannel

class DelayedChannel : public IteratorBase

Clones input channels, which can be delayed by a time specified with the delay parameter in the constructor or
the DelayedChannel::setDelay() method. A negative delay will delay all other events.

See all common methods

Note

If you want to set a global delay for one or more input channels, TimeTaggerBase::setInputDelay() is
recommended as long as the delays are small, which means that not more than 100 events on all channels
should arrive within the maximum delay set.

Public Functions

DelayedChannel(TimeTaggerBase tagger, channel_t input_channel, timestamp_t delay)

Parameters

• tagger – Time Tagger object instance.

• input_channel – Channel to be delayed.

• delay – Time by which the input is delayed, expressed in picoseconds.

void setDelay(timestamp_t delay)
Allows modifying the delay time.

Warning

Calling this method with a reduced delay time may result in a partial loss of the internally buffered time
tags.

Parameters
delay – Delay time in picoseconds.

7.4.9 EventGenerator

class EventGenerator : public IteratorBase

7.4. Virtual Channels 119



Time Tagger User Manual, Release 2.18.2.0

Emits an arbitrary pattern of timestamps for every trigger event. The number of trigger events can be reduced by
trigger_divider. The start of a new pattern does not abort the execution of unfinished patterns, so patterns may
overlap. The execution of all running patterns can be aborted by a click of the stop_channel, i.e. overlapping
patterns can be avoided by setting the stop_channel to the trigger_channel.

See all common methods

Public Functions

EventGenerator(TimeTaggerBase tagger, channel_t trigger_channel, timestamp_t[] pattern, int
trigger_divider = 1, int divider_offset = 0, channel_t stop_channel =
CHANNEL_UNUSED)

Parameters

• tagger – Time Tagger object instance.

• trigger_channel – Channel number of the trigger signal.

• pattern – List of relative timestamps defining the pattern executed upon a trigger event.

• trigger_divider – Factor by which the number of trigger events is reduced (default: 1).

• divider_offset – If trigger_divider > 1, the divider_offset the number of trigger clicks
to be ignored before emitting the first pattern (default: 0).

• stop_channel – Channel number of the stop channel.

7.4.10 FrequencyMultiplier

class FrequencyMultiplier : public IteratorBase

The FrequencyMultiplier inserts copies of the original input events from the input_channel and adds ad-
ditional events to match the upscaling factor. The algorithm used assumes a constant frequency and calculates
out of the last two incoming events the intermediate time stamps to match the frequency given by the multiplier
parameter.
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The FrequencyMultiplier can be used to restore the actual frequency applied to an input_channel which was
reduces via the EventDivider to lower the effective data rate.

See all common methods

Warning

Very high output frequencies create a high CPU load, eventually leading to overflows .

Public Functions

FrequencyMultiplier(TimeTaggerBase tagger, channel_t input_channel, int multiplier)

Parameters

• tagger – Time Tagger object instance.

• input_channel – Channel on which the upscaling of the frequency is based on.

• multiplier – Frequency upscaling factor.

7.4.11 GatedChannel

class GatedChannel : public IteratorBase

Transmits the signal from an input_channel to a new virtual channel between an edge detected at the
gate_start_channel and the gate_stop_channel.

See all common methods

Note

If you assign the same channel to input_channel and to gate_start_channel or gate_stop_channel, respec-
tively, the internal execution order of the transmission decision and the gate operation (opening or closing)
becomes important: For each tag on the input_channel, the decision is made based on the previous state.
After this decision is made for itself, the tag might toggle the gate state.

• input_channel == gate_stop_channel: If the gate is open prior to the arrival of the tag, the tag
will pass the gate and close it afterward. All subsequent tags will be eliminated until an event
on gate_start_channel opens the gate again. This means that after the gate has been opened, only
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a single tag will pass the gate, which is exactly the behavior of the Conditional Filter with with
gate_start_channel acting as the trigger and input_channel acting as the filtered channel.

• input_channel == gate_start_channel: If the gate is open prior to the arrival of the tag, the tag itself
will be blocked but opens the gate afterward. All subsequent tags will pass the gate until an event
on gate_stop_channel closes the gate again. This means that every event on gate_stop_channel will
eliminate exactly the next event on the input_channel.

This behavior applies to all software versions starting from 2.10.8.

Public Functions

GatedChannel(TimeTaggerBase tagger, channel_t input_channel, channel_t gate_start_channel, channel_t
gate_stop_channel, GatedChannelInitial initial = GatedChannelInitial::Closed)

Note

Note that gate_stop_channel == gate_start_channel will result in an exception.

Parameters

• tagger – Time Tagger object instance.

• input_channel – Channel which is gated.

• gate_start_channel – Channel on which a signal detected will start the transmission of
the input_channel through the gate.

• gate_stop_channel – Channel on which a signal detected will stop the transmission of
the input_channel through the gate.

• initial – The initial state of the gate. If overflows occur, the gate will be reset to this
state as well (default: GatedChannelInitial::Closed).

7.4.12 TriggerOnCountrate
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class TriggerOnCountrate : public IteratorBase
Measures the count rate inside a rolling time window and emits tags when a defined reference_countrate is
crossed. A TriggerOnCountrate object provides two virtual channels: the above and the below channels. The
above channel is triggered when the count rate exceeds the threshold (transition from below to above). The below
channel is triggered when the count rate falls below the threshold (transition from above to below).

To avoid the emission of multiple trigger tags in the transition area, the hysteresis count rate modifies the threshold
with respect to the transition direction: An event in the above channel will be triggered when the channel is in
the below state and rises to reference_countrate + hysteresis or above. Vice versa, the below channel
fires when the channel is in the above state and falls to the limit of reference_countrate - hysteresis or
below.

The time tags are always injected at the end of the integration window. You can use the DelayedChannel to
adjust the temporal position of the trigger tags with respect to the integration time window.

The very first tag of the virtual channel will be emitted a time_window after the instantiation of the object and
will reflect the current state, so either above or below.

See all common methods

Public Functions

TriggerOnCountrate(TimeTaggerBase tagger, channel_t input_channel, float reference_countrate, float
hysteresis, timestamp_t time_window)

Parameters

• tagger – Time Tagger object instance.

• input_channel – Channel number of the channel whose count rate will control the trigger
channels.

• reference_countrate – The reference count rate in Hz that separates the above range
from the below range.

• hysteresis – The threshold count rate in Hz for transitioning to the above threshold state
is countrate \>= reference_countrate + hysteresis, whereas it is countrate
\<= reference_countrate - hysteresis for transitioning to the below threshold
state. The hysteresis avoids the emission of multiple trigger tags upon a single transition.

• time_window – Rolling time window size in picoseconds. The count rate is analyzed
within this time window and compared to the threshold count rate.

channel_t getChannelAbove()
Get the channel number of the above channel.

channel_t getChannelBelow()
Get the channel number of the below channel.

channel_t[] getChannels()
Get both virtual channel numbers: [getChannelAbove(), getChannelBelow()].

float getCurrentCountrate()
Get the current count rate averaged within the time_window.

bool injectCurrentState()
Emits a time tag into the respective channel according to the current state. This is useful if you start a new
measurement that requires the information. The function returns whether it was possible to inject the event.
The injection is not possible if the Time Tagger is in overflow mode or the time window has not passed yet.
The function call is non-blocking.
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bool isAbove()
Returns whether the Virtual Channel is currently in the above state.

bool isBelow()
Returns whether the Virtual Channel is currently in the below state.

7.5 Measurement Classes
The Time Tagger library includes several classes that implement various measurements. All measurements are derived
from a base class called IteratorBase that is described further down. As the name suggests, it uses the iterator
programming concept.

All measurements provide a set of methods to start and stop the execution and to access the accumulated data. In a
typical application, the following steps are performed (see example):

1. Create an instance of a measurement

2. Wait for some time

3. Retrieve the data accumulated by the measurement by calling a .getData() method.

7.5.1 Available measurement classes

Note

In MATLAB, the Measurement names have common prefix TT*. For example: Correlation is named as
TTCorrelation. This prevents possible name collisions with existing MATLAB or user functions.

Correlation
Computes auto- and cross-correlations between channels.

CountBetweenMarkers
Counts events on a channel within gates defined by one or two marker channels.

Counter
Counts events on one or more channels using fixed-width bins and a circular buffer output.

Countrate
Measures the average event rate on one or more channels.

Dump
Deprecated - please use FileWriter instead. Writes raw time-tags to file in an uncompressed binary format.

FileReader
Reads time-tags from a compressed file written by the FileWriter measurement.

FileWriter
Writes time-tags into a file with a lossless compression. It replaces the Dump class.

Flim
Measures time histograms for fluorescence lifetime imaging.

FrequencyCounter
Measures frequency and phase evolution of periodic signals at periodic sampling intervals.

FrequencyStability
Analyzes the frequency stability of periodic signals at different time scales.
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Histogram
Accumulates a histogram of time differences between two channels.

Histogram2D
Accumulates a 2D histogram of correlated time differences.

HistogramLogBins
Accumulates a histogram of time differences using logarithmic binning.

HistogramND
Accumulates an N-dimensional histogram of time differences.

IteratorBase
Provides a base class for implementing custom measurements.

PulsePerSecondMonitor
Monitors the timing and stability of 1 pulse-per-second (PPS) signals.

Sampler
Samples the digital state of channels triggered by another channel.

Scope
Detects signal edges for visualization, similar to a ultrafast logic analyzer.

StartStop
Accumulates a histogram of start-stop time differences between two channels.

SynchronizedMeasurements
Synchronizes multiple measurement instances for parallel acquisition and control.

TimeDifferences
Accumulates histograms of time differences between two channels, optionally swept using one or two trigger
channels.

TimeDifferencesND
Accumulates multi-dimensional histograms of asynchronous time differences.

TimeTagStream
Provides low-level access to the raw time-tag stream for custom processing. See Raw Time-Tag-Stream access
to get on overview about the possibilities for the raw time-tag-stream access.

7.5.2 Common methods
class IteratorBase

void clear()
Discards accumulated measurement data, initializes the data buffer with zero values, and resets the state to
the initial state.

void start()
Starts or continues data acquisition. This method is implicitly called when a measurement object is created.

void startFor(timestamp_t capture_duration, bool clear = true)
Starts or continues the data acquisition for the given duration (in ps). After the duration time, the method
stop() is called and isRunning() will return False. Whether the accumulated data is cleared at the
beginning of startFor() is controlled with the second parameter clear, which is True by default.

Parameters

• capture_duration – Acquisition duration in picoseconds.

• clear – Resets the accumulated data at the beginning (default: True).
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void stop()
After calling this method, the measurement will stop processing incoming tags. Use start() or
startFor() to continue or restart the measurement.

void abort()
Immediately aborts the measurement, discarding accumulated measurement data, and resets the state to the
initial state.

Warning

After calling abort(), the last block of data might become irreversibly corrupted. Please always use
stop() to end a measurement.

bool isRunning()
Returns True if the measurement is collecting the data. This method will return False if the measurement
was stopped manually by calling stop() or automatically after calling startFor() and the duration has
passed.

Note

All measurements start accumulating data immediately after their creation.

Returns
True if the measurement is still running.

bool waitUntilFinished(int timeout = -1)
Blocks the execution until the measurement has finished. Can be used with startFor(). This is roughly
equivalent to a polling loop with sleep().

measurement.waitUntilFinished(timeout=-1)
# is roughly equivalent to
while measurement.isRunning():

sleep(0.01)

Parameters
timeout – Timeout in milliseconds. Negative value means no timeout, zero returns imme-
diately.

Returns
True if the measurement has finished, False on timeout.

timestamp_t getCaptureDuration()
Total capture duration since the measurement creation or last call to clear().

Returns
Capture duration in ps.

str getConfiguration()
Returns configuration data of the measurement object. The configuration includes the measurement name,
and the values of the current parameters. Information returned by this method is also provided with
TimeTaggerBase::getConfiguration().
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Returns
Configuration data of the measurement object.

7.5.3 Event counting
Countrate

class Countrate : public IteratorBase

Measures the average count rate on one or more channels. Specifically, it determines the counts per second
on the specified channels starting from the very first tag arriving after the instantiation or last call to clear()
of the measurement. The Countrate works correctly even when the USB transfer rate or backend processing
capabilities are exceeded.

See all common methods

Public Functions

Countrate(TimeTaggerBase tagger, channel_t[] channels)

Parameters

• tagger – Time tagger object instance.

• channels – Channels for which the average count rate is measured.

float[] getData()

Returns
Average count rate in counts per second.

int[] getCountsTotal()

Returns
The total number of events since the instantiation of this object.

Counter

class Counter : public IteratorBase
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Time trace of the count rate on one or more channels. Specifically, this measurement repeatedly counts tags within
a time interval binwidth and stores the results in a two-dimensional array of size number of channels by n_values.
The incoming data is first accumulated in a not-accessible bin. When the integration time of this bin has passed,
the accumulated data is added to the internal buffer, which can be accessed via the getData. . . methods. Data
stored in the internal circular buffer is overwritten when n_values are exceeded. You can prevent this by automat-
ically stopping the measurement in time as follows counter.startFor(duration=binwidth*n_values).

See all common methods

Public Functions

Counter(TimeTaggerBase tagger, channel_t[] channels, timestamp_t binwidth = 1000000000, int n_values =
1)

Parameters

• tagger – Time tagger object.

• channels – Channels used for counting tags.

• binwidth – Bin width in ps (default: 1e9).

• n_values – Number of bins (default: 1).

int[,] getData(bool rolling = true)
Returns an array of accumulated counter bins for each channel. The optional parameter rolling, controls if
the not integrated bins are padded before or after the integrated bins.

When rolling=True, the most recent data is stored in the last bin of the array and every new completed
bin shifts all other bins right-to-left. When continuously plotted, this creates an effect of rolling trace plot.
For instance, it is useful for continuous monitoring of countrate changes over time.

When rolling=False, the most recent data is stored in the next bin after previous such that the array is
filled up left-to-right. When array becomes full and the Counter is still running, the array index will be
reset to zero and the array will be filled again overwriting previous values. This operation is sometimes
called “sweep plotting”.

Parameters
rolling – Controls how the counter array is filled (default: True).

Returns
An array of size number of channels by n_values containing the counts in each fully integrated
bin.
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timestamp_t[] getIndex()
Returns the relative time of the bins in ps. The first entry of the returned vector is always 0.

Returns
A vector of size n_values containing the time bins in ps.

float[,] getDataNormalized(bool rolling = true)
Does the same as getData() but returns the count rate in Hz as a float. Not integrated bins and bins in
overflow mode are marked as NaN.

Parameters
rolling – Controls how the counter array is filled (default: True).

Returns
An array of size number of channels by n_values containing the count rate in Hz as a float in
each fully integrated bin.

int[] getDataTotalCounts()
Returns total number of events per channel since the last call to clear(), including the currently integrating
bin. This method works correctly even when the USB transfer rate or backend processing capabilities are
exceeded.

Returns
Number of events per channel.

CounterData getDataObject(bool remove = false)
Returns CounterData object containing a snapshot of the data accumulated in the Counter at the time
this method is called.

Parameters
remove – Controls if the returned data shall be removed from the internal buffer (default:
False).

Returns
A CounterData object providing access to a snapshot data.

class CounterData
Objects of this class are created and returned by Counter::getDataObject(), and contain a snapshot of the
data accumulated by the Counter measurement.

Public Functions

timestamp_t[] getIndex()
Returns the relative time of the bins in ps. The first entry of the returned vector is always 0 for size() > 0.

Returns
A vector of size size() containing the relative time bins in ps.

int[,] getData()

Returns
An array of size number of channels by size() containing only fully integrated bins.

float[,] getDataNormalized()
Does the same as getData() but returns the count rate in Hz. Bins in overflow mode are marked as NaN.

Returns
An array of size number of channels by size() containing the count rate in Hz as a float only
for fully integrated bins.
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float[,] getFrequency(timestamp_t time_scale = 1000000000000)
Returns the counts normalized to the specified time scale. Bins in overflow mode are marked as NaN.

Parameters
time_scale – Scales the return value to this time interval. Default is 1 s, so the return value
is in Hz. For negative values, the time scale is set to binwidth.

Returns
An array of size number of channels by size() containing the counts normalized to the
specified time scale.

int[] getDataTotalCounts()
Returns the total number of events per channel since the last call to IteratorBase::clear(), excluding
the counts of the internal bin where data is currently integrated into. This method works correctly even
when the USB transfer rate or backend processing capabilities are exceeded.

Returns
Number of events per channel.

timestamp_t[] getTime()
This is similar to getIndex() but it returns the absolute timestamps of the bins. For subsequent calls to
Counter::getDataObject, these arrays can be concatenated to obtain a full index array.

Returns
A vector of size size() containing the time corresponding to the return value of getData()
in ps.

int[] getOverflowMask()
Array of values for each bin that indicate if an overflow occurred during accumulation of the respective bin.

Returns
An array of size size() containing overflow mask.

Public Members

int size
Number of returned bins.

int dropped_bins
Number of bins which have been dropped because n_values of the Counter measurement has been ex-
ceeded.

bool overflow
Status flag for whether any of the returned bins have been in overflow mode.

CountBetweenMarkers

class CountBetweenMarkers : public IteratorBase
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Counts events on a single channel within the time indicated by a “start” and “stop” signals. The bin edges between
which counts are accumulated are determined by one or more hardware triggers. Specifically, the measurement
records data into a vector of length n_values (initially filled with zeros). It waits for tags on the begin_channel.
When a tag is detected on the begin_channel it starts counting tags on the click_channel. When the next tag is
detected on the begin_channel it stores the current counter value as the next entry in the data vector, resets the
counter to zero and starts accumulating counts again. If an end_channel is specified, the measurement stores
the current counter value and resets the counter when a tag is detected on the end_channel rather than the be-
gin_channel. You can use this, e.g., to accumulate counts within a gate by using rising edges on one channel as
the begin_channel and falling edges on the same channel as the end_channel. The accumulation time for each
value can be accessed via getBinWidths(). The measurement stops when all entries in the data vector are
filled.

See all common methods

Public Functions

CountBetweenMarkers(TimeTaggerBase tagger, channel_t click_channel, channel_t begin_channel,
channel_t end_channel = CHANNEL_UNUSED, int n_values = 1000)

Parameters

• tagger – Time tagger object.

• click_channel – Channel on which clicks are received, gated by begin_channel and
end_channel.

• begin_channel – Channel that triggers the beginning of counting and stepping to the next
value.

• end_channel – Channel that triggers the end of counting (optional, default: CHAN-
NEL_UNUSED)

• n_values – Number of values stored (data buffer size) (default: 1000)

int[] getData()

Returns
Array of size n_values containing the acquired counter values.

timestamp_t[] getIndex()

Returns
Vector of size n_values containing the time in ps of each start click in respect to the very first
start click.
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timestamp_t[] getBinWidths()

Returns
Vector of size n_values containing the time differences of ‘start -> (next start or stop)’ for the
acquired counter values.

bool ready()

Returns
True when the entire array is filled.

7.5.4 Time histograms
This section describes various measurements that calculate time differences between events and accumulate the results
into a histogram.

StartStop

class StartStop : public IteratorBase

A simple start-stop measurement. This class performs a start-stop measurement between two channels and stores
the time differences in a histogram. The histogram resolution is specified beforehand (binwidth) but the histogram
range is unlimited. It is adapted to the largest time difference that was detected. Thus all pairs of subsequent
clicks are registered. Only non-empty bins are recorded.

See all common methods

Public Functions

StartStop(TimeTaggerBase tagger, channel_t click_channel, channel_t start_channel =
CHANNEL_UNUSED, timestamp_t binwidth = 1000)

Parameters

• tagger – Time tagger object instance.

• click_channel – Channel on which stop clicks are received.
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• start_channel – Channel on which start clicks are received (default: CHAN-
NEL_UNUSED).

• binwidth – Bin width in ps (default: 1000).

timestamp_t[,] getData()

Returns
An array of tuples (array of shape Nx2) containing the times (in ps) and counts of each bin.
Only non-empty bins are returned.

Histogram

class Histogram : public IteratorBase

Accumulate time differences into a histogram. This is a simple multiple start, multiple stop measurement. This
is a special case of the more general TimeDifferences measurement. Specifically, the measurement waits for
clicks on the start_channel, and for each start click, it measures the time difference between the start clicks and
all subsequent clicks on the click_channel and stores them in a histogram. The histogram range and resolution
are specified by the number of bins and the bin width specified in ps. Clicks that fall outside the histogram range
are ignored. Data accumulation is performed independently for all start clicks. This type of measurement is
frequently referred to as a ‘multiple start, multiple stop’ measurement and corresponds to a full auto- or cross-
correlation measurement.

See all common methods

Public Functions

Histogram(TimeTaggerBase tagger, channel_t click_channel, channel_t start_channel =
CHANNEL_UNUSED, timestamp_t binwidth = 1000, int n_bins = 1000)

Parameters

• tagger – Time tagger object instance.

• click_channel – Channel on which clicks are received.

• start_channel – Channel on which start clicks are received (default: CHAN-
NEL_UNUSED).
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• binwidth – Bin width in ps (default: 1000).

• n_bins – The number of bins in the histogram (default: 1000).

int[] getData()

Returns
A one-dimensional array of size n_bins containing the histogram.

timestamp_t[] getIndex()

Returns
A vector of size n_bins containing the time bins in ps.

HistogramLogBins

class HistogramLogBins : public IteratorBase

The HistogramLogBins measurement is similar to Histogram but the bin edges are spaced logarithmically. As
the bins do not have a homogeneous binwidth, a proper normalization is required to interpret the raw data.

For excluding time ranges from the histogram evaluation while maintaining a proper normalization,
HistogramLogBins optionally takes two gating arguments of type ChannelGate. This can, e.g., be used to
pause the acquisition during erroneous ranges that have to be identified by virtual channels. The same mechanism
automatically applies to overflow ranges.

The acquired histogram 𝐻(𝑡) is normalized by

̃︀𝐻(𝜏) = 𝐼(𝜏) · 𝐶click · 𝐶start,
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with an estimation of counts 𝐼(𝜏) and the click and start channel count rates, 𝐶click = 𝑁click/𝑡click and 𝐶start =
𝑁start/𝑡start , respectively. Typically, this will be used to calculate

𝑔(2)(𝜏) =
𝐻(𝜏)̃︀𝐻(𝜏)

.

For 𝑡 ≫ 10exp_stop s and without interruptions, 𝐼(𝜏)/𝑡 will approach the binwidth of the respective bin. During
the early acquisition and in case of interruptions, 𝐼(𝜏) can be significantly smaller, which compensates for counts
that are excluded from 𝐻(𝜏).

See all common methods

Public Functions

HistogramLogBins(TimeTaggerBase tagger, channel_t click_channel, channel_t start_channel, float
exp_start, float exp_stop, int n_bins, ChannelGate click_gate = None, ChannelGate
start_gate = None)

Parameters

• tagger – Time tagger object instance.

• click_channel – Channel on which clicks are received.

• start_channel – Channel on which start clicks are received.

• exp_start – Exponent 10^exp_start in seconds where the very first bin begins.

• exp_stop – Exponent 10^exp_stop in seconds where the very last bin ends.

• n_bins – The number of bins in the histogram.

• click_gate – Optional evaluation gate for the click_channel.

• start_gate – Optional evaluation gate for the start_channel.

HistogramLogBinsData getDataObject()

Returns
A data object containing raw and normalization data.

timestamp_t[] getBinEdges()

Returns
A vector of size n_bins+1 containing the bin edges in picoseconds.

int[] getData()

Deprecated:
Since version 2.17.0. Please use getDataObject() and HistogramLogBinsData::getCounts()
instead.

Returns
A one-dimensional array of size n_bins containing the histogram.

float[] getDataNormalizedCountsPerPs()

Deprecated:
Since version 2.17.0.

Returns
The counts normalized by the binwidth of each bin.
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float[] getDataNormalizedG2()

Deprecated:
Since version 2.17.0. Please use getDataObject() and HistogramLogBinsData::getG2() in-
stead.

Returns
The counts normalized by the binwidth of each bin and the average count rate.

class HistogramLogBinsData

Contains the histogram counts 𝐻(𝜏) and the corresponding normalization function ̃︀𝐻(𝜏).

Public Functions

float[] getG2()

Returns
A one-dimensional array of size n_bins containing the normalized histogram 𝐻(𝜏)/ ̃︀𝐻(𝜏).

int[] getCounts()

Returns
A one-dimensional array of size n_bins containing the raw histogram 𝐻(𝜏).

float[] getG2Normalization()

Returns
A one-dimensional array of size n_bins containing the normalization ̃︀𝐻(𝜏).

Histogram2D

class Histogram2D : public IteratorBase

This measurement is a 2-dimensional version of the Histogram measurement. The measurement accumulates
two-dimensional histogram where stop signals from two separate channels define the bin coordinate. For in-
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stance, this kind of measurement is similar to that of typical 2D NMR spectroscopy. The data within the his-
togram is acquired via a single-start, single-stop analysis for each axis. The first stop click of each axis is taken
after the start click to evaluate the histogram counts.

See all common methods

Public Functions

Histogram2D(TimeTaggerBase tagger, channel_t start_channel, channel_t stop_channel_1, channel_t
stop_channel_2, timestamp_t binwidth_1, timestamp_t binwidth_2, int n_bins_1, int n_bins_2)

Parameters

• tagger – Time tagger object

• start_channel – Channel on which start clicks are received

• stop_channel_1 – Channel on which stop clicks for the time axis 1 are received

• stop_channel_2 – Channel on which stop clicks for the time axis 2 are received

• binwidth_1 – Bin width in ps for the time axis 1

• binwidth_2 – Bin width in ps for the time axis 2

• n_bins_1 – The number of bins along the time axis 1

• n_bins_2 – The number of bins along the time axis 2

int[,] getData()

Returns
A two-dimensional array of size n_bins_1 by n_bins_2 containing the 2D histogram.

timestamp_t[„] getIndex()
Returns a 3D array containing two coordinate matrices (meshgrid) for time bins in ps for the time axes
1 and 2. For details on meshgrid please take a look at the respective documentation either for Matlab or
Python NumPy.

Returns
A three-dimensional array of size n_bins_1 x n_bins_2 x 2.

timestamp_t[] getIndex_1()

Returns
A vector of size n_bins_1 containing the bin locations in ps for the time axis 1.

timestamp_t[] getIndex_2()

Returns
A vector of size n_bins_2 containing the bin locations in ps for the time axis 2.

HistogramND

class HistogramND : public IteratorBase
This measurement is the generalization of Histogram2D to an arbitrary number of dimensions. The data within
the histogram is acquired via a single-start, single-stop analysis for each axis. The first stop click of each axis is
taken after the start click to evaluate the histogram counts.

HistogramND can be used as a 1D Histogram with single-start single-stop behavior.

See all common methods
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Public Functions

HistogramND(TimeTaggerBase tagger, channel_t start_channel, channel_t[] stop_channels, timestamp_t[]
binwidths, int[] n_bins)

Parameters

• tagger – Time tagger object.

• start_channel – Channel on which start clicks are received.

• stop_channels – Channel list on which stop clicks are received defining the time axes.

• binwidths – Bin width in ps for the corresponding time axis.

• n_bins – The number of bins along the corresponding time axis.

int[] getData()
Returns a one-dimensional array of the size of the product of n_bins containing the histogram data. The
array order is in row-major. For example, with stop_channels=[ch1, ch2] and n_bins=[2, 2], the
1D array would represent 2D bin indices in the order [(0,0), (0,1), (1,0), (1,1)], with (index
of ch1, index of ch2). Please reshape the 1D array to get the N-dimensional array. The following code
demonstrates how to reshape the returned 1D array into multidimensional array using NumPy:

channels = [2, 3, 4, 5]
n_bins = [5, 3, 4, 6]
binwidths = [100, 100, 100, 50]
histogram_nd = HistogramND(tagger, 1, channels, binwidths, n_bins)
sleep(1) # Wait to accumulate the data
data = histogram_nd.getData()
multidim_array = numpy.reshape(data, n_bins)

Returns
Flattened array of histogram bins.

timestamp_t[] getIndex(int dim = 0)

Returns
A vector of size n_bins[dim] containing the bin locations in ps for the corresponding time
axis.
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Correlation

class Correlation : public IteratorBase

Accumulates time differences between clicks on two channels into a histogram, where all clicks are considered
both as “start” and “stop” clicks and both positive and negative time differences are calculated.

See all common methods

Public Functions

Correlation(TimeTaggerBase tagger, channel_t channel_1, channel_t channel_2 = CHANNEL_UNUSED,
timestamp_t binwidth = 1000, int n_bins = 1000)

Parameters

• tagger – Time tagger object.

• channel_1 – Channel on which (stop) clicks are received.

• channel_2 – Channel on which reference clicks (start) are received (when left empty or
set to CHANNEL_UNUSED -> an auto-correlation measurement is performed, which is
the same as setting channel_1 = channel_2) (default: CHANNEL_UNUSED).

• binwidth – Bin width in ps (default: 1000).

• n_bins – The number of bins in the resulting histogram (default: 1000).

int[] getData()

Returns
A one-dimensional array of size n_bins containing the histogram.

float[] getDataNormalized()
Return the data normalized as:

𝑔(2)(𝜏) =
∆𝑡

𝑏𝑖𝑛𝑤𝑖𝑑𝑡ℎ(𝜏) ·𝑁1 ·𝑁2
· ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚(𝜏),

where ∆𝑡 is the capture duration, 𝑁1 and 𝑁2 are number of events in each channel.

7.5. Measurement Classes 139



Time Tagger User Manual, Release 2.18.2.0

Returns
Data normalized by the binwidth and the average count rate.

timestamp_t[] getIndex()

Returns
A vector of size n_bins containing the time bins in ps.

TimeDifferences

class TimeDifferences : public IteratorBase

A one-dimensional array of time-difference histograms with the option to include up to two additional channels
that control how to step through the indices of the histogram array. This is a very powerful and generic mea-
surement. You can use it to record consecutive cross-correlation, lifetime measurements, fluorescence lifetime
imaging and many more measurements based on pulsed excitation. Specifically, the measurement waits for a
tag on the start_channel, then measures the time difference between the start tag and all subsequent tags on
the click_channel and stores them in a histogram. If no start_channel is specified, the click_channel is used as
start_channel corresponding to an auto-correlation measurement. The histogram has a number n_bins of bins of
bin width binwidth. Clicks that fall outside the histogram range are discarded. Data accumulation is performed
independently for all start tags. This type of measurement is frequently referred to as ‘multiple start, multiple
stop’ measurement and corresponds to a full auto- or cross-correlation measurement.

The time-difference data can be accumulated into a single histogram or into multiple subsequent histograms. In
this way, you can record a sequence of time-difference histograms. To switch from one histogram to the next one
you have to specify a channel that provide switch markers (next_channel parameter). Also you need to specify
the number of histograms with the parameter n_histograms. After each tag on the next_channel, the histogram
index is incremented by one and reset to zero after reaching the last valid index. The measurement starts with
the first tag on the next_channel.

You can also provide a synchronization marker that resets the histogram index by specifying a sync_channel.
The measurement starts when a tag on the sync_channel arrives with a subsequent tag on next_channel. When a
rollover occurs, the accumulation is stopped until the next sync and subsequent next signal. A sync signal before
a rollover will stop the accumulation, reset the histogram index and a subsequent signal on the next_channel
starts the accumulation again.

Typically, you will run the measurement indefinitely until stopped by the user. However, it is also possible to
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specify the maximum number of rollovers of the histogram index. In this case, the measurement stops when the
number of rollovers has reached the specified value.

See all common methods

Public Functions

TimeDifferences(TimeTaggerBase tagger, channel_t click_channel, channel_t start_channel =
CHANNEL_UNUSED, channel_t next_channel = CHANNEL_UNUSED, channel_t
sync_channel = CHANNEL_UNUSED, timestamp_t binwidth = 1000, int n_bins = 1000,
int n_histograms = 1)

Note

A rollover occurs on a next_channel event while the histogram index is already in the last histogram. If
sync_channel is defined, the measurement will pause at a rollover until a sync_channel event occurs and
continues at the next next_channel event. With undefined sync_channel, the measurement will continue
without interruption at histogram index 0.

Parameters

• tagger – Time tagger object instance.

• click_channel – Channel on which stop clicks are received.

• start_channel – Channel that sets start times relative to which clicks on the click channel
are measured.

• next_channel – Channel that increments the histogram index.

• sync_channel – Channel that resets the histogram index to zero.

• binwidth – Binwidth in picoseconds.

• n_bins – Number of bins in each histogram.

• n_histograms – Number of histograms.

int[,] getData()

Returns
A two-dimensional array of size n_bins by n_histograms containing the histograms.

timestamp_t[] getIndex()

Returns
A vector of size n_bins containing the time bins in ps.

void setMaxCounts(int max_counts)
Sets the number of rollovers at which the measurement stops integrating. To integrate infinitely, set the
value to 0, which is the default value.

Parameters
max_counts – Maximum number of sync/next clicks.

int getHistogramIndex()

Returns
The index of the currently processed histogram or the waiting state. Possible return values
are:
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• -2: Waiting for an event on sync_channel (only if sync_channel is defined)

• -1: Waiting for an event on next_channel (only if sync_channel is defined)

• 0 . . . (n_histograms - 1): Index of the currently processed histogram.

int getCounts()

Returns
The number of rollovers (histogram index resets).

bool ready()

Returns
True when the required number of rollovers set by setMaxCounts() has been reached.

TimeDifferencesND

class TimeDifferencesND : public IteratorBase

This is an implementation of the TimeDifferences measurement class that extends histogram indexing into
multiple dimensions. Please read the documentation of TimeDifferences first.

It captures many multiple start - multiple stop histograms, but with many asynchronous next_channel triggers.
After each tag on each next_channel, the histogram index of the associated dimension is incremented by one and
reset to zero after reaching the last valid index. The elements of the parameter n_histograms specify the number
of histograms per dimension. The accumulation starts when next_channel has been triggered on all dimensions.

You should provide a synchronization trigger by specifying a sync_channel per dimension. It will stop the accu-
mulation when an associated histogram index rollover occurs. A sync event will also stop the accumulation and
reset the histogram index of the associated dimension. A subsequent event on the corresponding next_channel
will start the accumulation again. The synchronization is done asynchronously, so an event on the next_channel
increments the histogram index even if the accumulation is stopped. The accumulation will start when a tag on
the sync_channel arrives with a subsequent tag on next_channel for all dimensions.
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Please use TimeTaggerBase::setInputDelay() to adjust the latency of all channels. In general, the order of
the provided triggers including maximum jitter should be:

old start trigger -> all sync triggers -> all next triggers -> new start trigger.

See all common methods

Public Functions

TimeDifferencesND(TimeTaggerBase tagger, channel_t click_channel, channel_t start_channel, channel_t[]
next_channels, channel_t[] sync_channels, int[] n_histograms, timestamp_t binwidth,
int n_bins)

Parameters

• tagger – Time tagger object instance.

• click_channel – Channel on which stop clicks are received.

• start_channel – Channel that sets start times relative to which clicks on the click channel
are measured.

• next_channels – Vector of channels that increments the histogram index.

• sync_channels – Vector of channels that resets the histogram index to zero.

• n_histograms – Vector of numbers of histograms per dimension.

• binwidth – Width of one histogram bin in ps.

• n_bins – Number of bins in each histogram.

int[,] getData()

Returns
A two-dimensional array of size n_bins by n_histograms containing the histograms.

timestamp_t[] getIndex()

Returns
A vector of size n_bins containing the time bins in ps.

7.5.5 Fluorescence-lifetime imaging (FLIM)
This section describes the FLIM related measurements classes of the Time Tagger API.

FlimAbstract

class FlimAbstract : public IteratorBase
This is an interface class for FLIM measurements that defines common methods.

Subclassed by Flim, FlimBase

Public Functions

bool isAcquiring()
Tells if the class is still acquiring data. It can only reach the false state if stop_after_outputframe >
0.

This method is different from isRunning() and indicates if the specified number of frames is acquired.
After acquisition completed, it can’t be started again.
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Returns
True/False.

Flim

Changed in version 2.7.2.

Note

The Flim (beta) implementation is not final yet. It has a very advanced functionality, but details are subject to
change. Please give us feedback (support@swabianinstruments.com) when you encounter issues or when you have
ideas for additional functionality.

Fluorescence-lifetime imaging microscopy (FLIM) is an imaging technique for producing an image based on the dif-
ferences in the exponential decay rate of the fluorescence from a sample.

Fluorescence lifetimes can be determined in the time domain by using a pulsed source. When a population of fluo-
rophores is excited by an ultrashort or delta-peak pulse of light, the time-resolved fluorescence will decay exponentially.

This measurement implements a line scan in a FLIM image that consists of a sequence of pixels. This could either
represent a single line of the image, or - if the image is represented as a single meandering line - this could represent
the entire image.

We provide two different classes that support FLIM measurements: Flim and FlimBase. Flim provides a versatile
high-level API. FlimBase instead provides the essential functionality with no overhead to perform Flim measurements.
FlimBase is based on a callback approach.

Please visit the Python example folder for a reference implementation.

Note

Up to version 2.7.0, the Flim implementation was very limited and has been fully rewritten in version 2.7.2. You
can use the following 1 to 1 replacement to get the old Flim behavior:
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# FLIM before version 2.7.0:
Flim(tagger, click_channel=1, start_channel=2, next_channel=3,

binwidth=100, n_bins=1000, n_pixels=320*240)

# FLIM 2.7.0 replacement using TimeDifferences
TimeDifferences(tagger, click_channel=1, start_channel=2,

next_channel=3, sync_channel=CHANNEL_UNUSED,
binwidth=100, n_bins=1000, n_histograms=320*240)

class Flim : public FlimAbstract
High-Level class for implementing FLIM measurements. The Flim class includes buffering of images and several
analysis methods.

This class supports expansion of functionality with custom FLIM frame processing by overriding virtual/abstract
frameReady() callback. If you need custom implementation with minimal overhead and highest performance,
consider overriding FlimBase class instead.

The data query methods are organized into a few groups.

The methods getCurrentFrame...() relate to the active frame which is currently being acquired.

The methods getReadyFrame...() relate to the last completely acquired frame.

The methods getSummedFrames...() operate to all frames which have been acquired so far. Optional param-
eter only_ready_frames selects if the current incomplete frame shall be included or excluded from calculation.

The methods get...Ex instead of an array return a FlimFrameInfo object containing frame data with additional
information collected at the same time instance.

See all common methods

Warning

When overriding this class, you must set pre_initialize=False and then call initialize() at the end of
your custom constructor code. Otherwise, you may experience unstable or erratic behavior of your program,
as the callback frameReady() may be called before construction of the subclass completed.

Public Functions

Flim(TimeTaggerBase tagger, channel_t start_channel, channel_t click_channel, channel_t
pixel_begin_channel, int n_pixels, int n_bins, timestamp_t binwidth, channel_t pixel_end_channel =
CHANNEL_UNUSED, channel_t frame_begin_channel = CHANNEL_UNUSED, int
finish_after_outputframe = 0, int n_frame_average = 1, bool pre_initialize = true)

Parameters

• tagger – Time tagger object instance.

• start_channel – Channel on which start clicks are received for the time differences his-
togramming.

• click_channel – Channel on which clicks are received for the time differences histogram-
ming.

• pixel_begin_channel – Start marker of a pixel (histogram).
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• n_pixels – Number of pixels (histograms) of one frame.

• n_bins – Number of histogram bins for each pixel.

• binwidth – Bin size in picoseconds.

• pixel_end_channel – End marker of a pixel - incoming clicks on the click_channel will
be ignored afterwards (optional, default: CHANNEL_UNUSED).

• frame_begin_channel – Start the frame, or reset the pixel index (optional, default:
CHANNEL_UNUSED).

• finish_after_outputframe – Sets the number of frames stored within the measurement
class. After reaching the number, the measurement will stop. If the number is 0, one frame
is stored and the measurement runs continuously (optional, default: 0).

• n_frame_average – Average multiple input frames into one output frame (default: 1).

• pre_initialize – Initializes the measurement on constructing (optional, default: True).
On subclassing, you must set this parameter to False, and then call initialize() at the
end of your custom constructor method.

int[,] getCurrentFrame()

Returns
The histograms for all pixels of the currently active frame, 2D array with dimensions [n_bins,
n_pixels].

FlimFrameInfo getCurrentFrameEx()

Returns
The currently active frame data with additional information collected at the same instance of
time.

float[] getCurrentFrameIntensity()

Returns
The intensities of all pixels of the currently active frame. The pixel intensity is defined by the
number of counts acquired within the pixel divided by the respective integration time.

int getFramesAcquired()

Returns
The number of frames that have been completed so far, since the creation or last clear of the
object.

timestamp_t[] getIndex()

Returns
A vector of size n_bins containing the time bins in ps.

int[,] getReadyFrame(int index = -1)

Parameters
index – Index of the frame to be obtained. If -1, the last frame which has been completed is
returned. (optional, default: -1).

Returns
The histograms for all pixels according to the frame index given. If index is -1, it will return
the last frame, which has been completed. When stop_after_outputframe is 0, the index value
must be -1. If index >= stop_after_outputframe, it will throw an error. 2D array with
dimensions [n_bins, n_pixels]
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FlimFrameInfo getReadyFrameEx(int index = -1)

Parameters
index – Index of the frame to be obtained. If -1, the last frame which has been completed is
returned. (optional, default: -1).

Returns
The frame according to the index given. If index is -1, it will return the latest com-
pleted frame. When stop_after_outputframe is 0, index must be -1. If index >=
stop_after_outputframe, it will throw an error.

float[] getReadyFrameIntensity(int index = -1)

Parameters
index – Index of the frame to be obtained. If -1, the last frame which has been completed is
returned. (optional, default: -1).

Returns
The intensities according to the frame index given. If index is -1, it will return the intensity
of the last frame, which has been completed. When stop_after_outputframe is 0, the index
value must be -1. If index >= stop_after_outputframe, it will throw an error. The
pixel intensity is defined by the number of counts acquired within the pixel divided by the
respective integration time.

int[,] getSummedFrames(bool only_ready_frames = true, bool clear_summed = false)

Parameters

• only_ready_frames – If true, only the finished frames are added. On false, the currently
active frame is aggregated. (optional, default: True).

• clear_summed – If True, the summed frames memory will be cleared. (optional, default:
False).

Returns
The histograms for all pixels. The counts within the histograms are integrated since the start
or the last clear of the measurement.

FlimFrameInfo getSummedFramesEx(bool only_ready_frames = true, bool clear_summed = false)

Parameters

• only_ready_frames – If true, only the finished frames are added. On false, the currently
active frame is aggregated. (optional, default: True).

• clear_summed – If True, the summed frames memory will be cleared. (optional, default:
False).

Returns
A sum of all acquired frames with additional information collected at the same instance of
time.

float[] getSummedFramesIntensity(bool only_ready_frames = true, bool clear_summed = false)

Parameters

• only_ready_frames – If true, only the finished frames are added. On false, the currently
active frame is aggregated. (optional, default: True).

• clear_summed – If True, the summed frames memory will be cleared. (optional, default:
False).
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Returns
The intensities of all pixels summed over all acquired frames. The pixel intensity is the num-
ber of counts within the pixel divided by the integration time.

void initialize()
This function initialized the Flim object and starts execution. It does nothing if constructor parameter
pre_initialize==True.

Protected Functions

virtual void frameReady(int frame_number, int[] data, timestamp_t[] pixel_begin_times, timestamp_t[]
pixel_end_times, timestamp_t frame_begin_time, timestamp_t frame_end_time)

The method is called automatically by the Time Tagger engine for each completely acquired frame. In its
parameters, it provides FLIM frame data and related information. You have to override this method with
your own implementation.

Warning

The code of override must be fast, as it is executed in context of Time Tagger processing thread and
blocks the processing pipeline. Slow override code may lead to the buffer overflows.

Parameters

• frame_number – Current frame number.

• data – 1D array containing the raw histogram data, with the data of pixel i and time bin
j at index i * n_bins + j.

• pixel_begin_times – Start time for each pixel.

• pixel_end_times – End time for each pixel.

• frame_begin_time – Start time of the frame.

• frame_end_time – End time of the frame.

FlimFrameInfo

class FlimFrameInfo
This is a simple class that contains FLIM frame data and provides convenience accessor methods.

Note

Objects of this class are returned by the methods of the |FLIM| classes. Normally user will not construct
FlimFrameInfo objects themselves.

Public Functions

int getFrameNumber()

Returns
The frame number, starting from 0 for the very first frame acquired. If the index is -1, it is an
invalid frame which is returned on error.
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bool isValid()

Returns
A boolean which tells if this frame is valid or not. Invalid frames are possible on errors, such
as requesting the last completed frame when no frame has been completed so far.

int getPixelPosition()

Returns
A value which tells how many pixels were processed for this frame.

int[,] getHistograms()

Returns
All histograms of the frame, 2D array with dimensions [n_bins, n_pixels].

float[] getIntensities()

Returns
The summed counts of each histogram divided by the integration time.

int[] getSummedCounts()
The summed counts of each histogram.

timestamp_t[] getPixelBegins()
An array of the start timestamps of each pixel.

timestamp_t[] getPixelEnds()
An array of the end timestamps of each pixel.

Public Members

int pixels
Number of pixels in the frame.

int bins
Number of bins of each histogram.

int frame_number
Current frame number.

int pixel_position
Current pixel position.

FlimBase

The FlimBase provides only the most essential functionality for FLIM tasks. The benefit from the reduced functionality
is that it is very memory and CPU efficient. The class provides the FlimBase.frameReady callback, which must be used
to analyze the data.

class FlimBase : public FlimAbstract
This is a minimal class that acquires a FLIM frame and calls virtual/abstract frameReady() callback method
with the frame data as parameters. This class is intended for custom implementations of fast FLIM frame pro-
cessing with minimal overhead. You can reach frame acquisition rates suitable for realtime video observation.
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If you need custom FLIM frame processing implementation while retaining functionality present in the Flim
class, consider subclassing Flim instead.

See all common methods

Warning

When overriding this class, you must set pre_initialize=False and then call initialize() at the end of
your custom constructor code. Otherwise, you may experience unstable or erratic behavior of your program,
as the callback frameReady() may be called before construction of the subclass completed.

Public Functions

FlimBase(TimeTaggerBase tagger, channel_t start_channel, channel_t click_channel, channel_t
pixel_begin_channel, int n_pixels, int n_bins, timestamp_t binwidth, channel_t pixel_end_channel
= CHANNEL_UNUSED, channel_t frame_begin_channel = CHANNEL_UNUSED, int
finish_after_outputframe = 0, int n_frame_average = 1, bool pre_initialize = true)

Parameters

• tagger – Time tagger object instance.

• start_channel – Channel on which start clicks are received for the time differences his-
togramming.

• click_channel – Channel on which clicks are received for the time differences histogram-
ming.

• pixel_begin_channel – Start marker of a pixel (histogram).

• n_pixels – Number of pixels (histograms) of one frame.

• n_bins – Number of histogram bins for each pixel.

• binwidth – Bin size in picoseconds.

• pixel_end_channel – End marker of a pixel - incoming clicks on the click_channel will
be ignored afterwards (optional, default: CHANNEL_UNUSED).

• frame_begin_channel – Start the frame, or reset the pixel index (optional, default:
CHANNEL_UNUSED).

• finish_after_outputframe – Sets the number of frames stored within the measurement
class. After reaching the number, the measurement will stop. If the number is 0, one frame
is stored and the measurement runs continuously (optional, default: 0).

• n_frame_average – Average multiple input frames into one output frame (default: 1).

• pre_initialize – Initializes the measurement on constructing (optional, default: True).
On subclassing, you must set this parameter to False, and then call initialize() at the
end of your custom constructor method.

void initialize()
This function initialized the Flim object and starts execution. It does nothing if constructor parameter
pre_initialize==True.
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Protected Functions

virtual void frameReady(int frame_number, int[] data, timestamp_t[] pixel_begin_times, timestamp_t[]
pixel_end_times, timestamp_t frame_begin_time, timestamp_t frame_end_time)

The method is called automatically by the Time Tagger engine for each completely acquired frame. In its
parameters, it provides FLIM frame data and related information. You have to override this method with
your own implementation.

Warning

The code of override must be fast, as it is executed in context of Time Tagger processing thread and
blocks the processing pipeline. Slow override code may lead to the buffer overflows.

Parameters

• frame_number – Current frame number.

• data – 1D array containing the raw histogram data, with the data of pixel i and time bin
j at index i * n_bins + j.

• pixel_begin_times – Start time for each pixel.

• pixel_end_times – End time for each pixel.

• frame_begin_time – Start time of the frame.

• frame_end_time – End time of the frame.

7.5.6 Phase & frequency analysis
This section describes measurements that expect periodic signals, e.g., oscillator outputs.

FrequencyStability

class FrequencyStability : public IteratorBase
Frequency Stability Analysis is used to characterize periodic signals and to identify sources of deviations from
the perfect periodicity. It can be employed to evaluate the frequency stability of oscillators, for example. A
set of established metrics provides insights into the oscillator characteristics on different time scales. The most
prominent metric is the Allan Deviation (ADEV). FrequencyStability class executes the calculation of often
used metrics in parallel and conforms to the IEEE 1139 standard. For more information, we recommend the
Handbook of Frequency Stability Analysis.

The calculated deviations are the root-mean-square
√︂
𝑓𝑛

∑︀
𝑖
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𝐸

(𝑛)
𝑖

)︁2

of a specific set of error samples 𝐸(𝑛)

with a normalization factor 𝑓𝑛. The step size 𝑛 together with the oscillator period 𝑇 defines the time span
𝜏𝑛 = 𝑛𝑇 that is investigated by the sample. The error samples 𝐸(𝑛) are calculated from the phase samples 𝑡 that
are generated by the FrequencyStability class by averaging over the timestamps of a configurable number of
time-tags. To investigate the averaged phase samples directly, a trace of configurable length is stored to display
the current evolution of frequency and phase errors.

Each of the available deviations has its specific sample 𝐸(𝑛). For example, the Allan Deviation investigates the
second derivative of the phase 𝑡 using the sample 𝐸

(𝑛)
𝑖 = 𝑡𝑖 − 2𝑡𝑖+𝑛 + 𝑡𝑖+2𝑛. The full formula of the Allan

deviation for a set of 𝑁 averaged timestamps is

ADEV(𝜏𝑛) =

⎯⎸⎸⎷ 1

2(𝑁 − 2𝑛)𝜏2𝑛

𝑁−2𝑛∑︁
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(𝑡𝑖 − 2𝑡𝑖+𝑛 + 𝑡𝑖+2𝑛)
2
.
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The deviations can be displayed in the Allan domain or in the time domain. For the time domain, the Allan
domain data is multiplied by a factor proportional to 𝜏 . This means that in a log-log plot, all slopes of the time
domain curves are increased by +1 compared to the Allan ones. The factor

√
3 for |ADEV|/|MDEV| and

√︀
10/3

for |HDEV|, respectively, is used so that the scaled deviations of a white phase noise distortion correspond to
the standard deviation of the averaged timestamps 𝑡. In some cases, there are different established names for the
representations. The FrequencyStability class provides numerous metrics for both domains:

Allan domain Time domain
Standard Deviation (STDD)

Allan Deviation (ADEV) ADEVScaled = 𝜏√
3

ADEV
Modified Allan Deviation (ADEV) Time Deviation TDEV = 𝜏√

3
MDEV

Hadamard Deviation (HDEV ) HDEVScaled = 𝜏√
10/3

HDEV

See all common methods

Public Functions

FrequencyStability(TimeTaggerBase tagger, channel_t channel, int[] steps, timestamp_t average = 1000,
int trace_len = 1000)

Note

Use average and TimeTagger::setEventDivider() with care: The event divider can be used to
save USB bandwidth. If possible, transfer more data via USB and use average to improve your results.

Parameters

• tagger – Time tagger object.

• channel – The input channel number.

• steps – The step sizes to consider in the calculation. The length of the list determines the
maximum number of data points. Because the oscillator frequency is unknown, it is not
possible to define 𝜏 directly.

• average – The number of time-tags to average internally. This downsampling allows for
a reduction of noise and memory requirements (default: 1000).

• trace_len – Number of data points in the phase and frequency error traces, calculated
from averaged data. The trace always contains the latest data (default: 1000).

FrequencyStabilityData getDataObject()

Returns
An object that allows access to the current metrics.

class FrequencyStabilityData
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Public Functions

float[] getTau()
The 𝜏 axis for all deviations. This is the product of the steps parameter of the FrequencyStability
measurement and the measured average period of the signal.

Returns
The 𝜏 values.

float[] getADEV()
The overlapping Allan deviation, the most common analysis framework. In a log-log plot, the slope allows
one to identify the type of noise:

• -1: white or flicker phase noise like discretization or analog noisy delay

• -0.5: white period noise

• 0: flicker period noise like electric noisy oscillator

• 0.5: integrated white period noise (random walk period)

• 1: frequency drift, e.g., induced thermally.

Sample
𝐸

(𝑛)
𝑖 = 𝑡𝑖 − 2𝑡𝑖+𝑛 + 𝑡𝑖+2𝑛.

Domain
Allan domain.

Returns
The overlapping Allan Deviation.

float[] getMDEV()
Modified overlapping Allan deviation. It averages the second derivate before calculating the RMS. This
splits the slope of white and flicker phase noise:

• -1.5: white phase noise, like discretization

• -1.0: flicker phase noise, like an electric noisy delay.

The metric is more commonly used in the time domain, see getTDEV():

Sample
𝐸

(𝑛)
𝑖 = 1

𝑛

∑︀𝑛−1
𝑗=0 (𝑡𝑖+𝑗 − 2𝑡𝑖+𝑗+𝑛 + 𝑡𝑖+𝑗+2𝑛).

Domain
Allan domain.

Returns
The overlapping MDEV.
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float[] getHDEV()
The overlapping Hadamard deviation uses the third derivate of the phase. This cancels the effect of a
constant phase drift and converges for more divergent noise sources at higher slopes:

• 1: integrated flicker period noise (flicker walk period)

• 1.5: double integrated white period noise (random run period).

It is scaled to match the ADEV for white period noise.

Sample
𝐸

(𝑛)
𝑖 = 𝑡𝑖 − 3𝑡𝑖+𝑛 + 3𝑡𝑖+2𝑛 − 𝑡𝑖+3𝑛.

Domain
Allan domain.

Returns
The overlapping HDEV.

float[] getSTDD()
Standard deviation of the periods.

Warning

The standard deviation is not recommended as a measure of frequency stability because it is non-
convergent for some types of noise commonly found in frequency sources, most noticeable the fre-
quency drift.

Sample
𝐸

(𝑛)
𝑖 = 𝑡𝑖 − 𝑡𝑖+𝑛 −mean𝑘(𝑡𝑘 − 𝑡𝑘+𝑛).

Domain
Time domain.

Returns
The standard deviation.

float[] getADEVScaled()

Domain
Time domain.

Returns
The scaled version of the overlapping Allan Deviation, equivalent to getADEV() * getTau()
/
√
3.
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float[] getTDEV()
The Time Deviation (TDEV) is the common representation of the Modified overlapping Allan deviation
getMDEV(). Taking the log-log slope +1 and the splitting of the slope of white and flicker phase noise into
account, it allows an easy identification of the two contributions:

• -0.5: white phase noise, like discretization

• 0: flicker phase noise, like an electric noisy delay.

Domain
Time domain.

Returns
The overlapping Time Deviation, equivalent to getMDEV()* getTau() /

√
3.

float[] getHDEVScaled()

Warning

While HDEV is scaled to match ADEV for white period noise, this function is scaled to match the
TDEV for white phase noise. The difference of period vs phase matching is roughly 5% and easy to
overlook.

Domain
Time domain.

Returns
The scaled version of the overlapping Hadamard Deviation, equivalent to getHDEV() *
getTau() /

√︀
10/3.

float[] getTraceIndex()
The time axis for getTracePhase() and getTraceFrequency().

Returns
The time index in seconds of the phase and frequency error trace.

float[] getTracePhase()
Provides the time offset of the averaged timestamps from a linear fit over the last trace_len averaged times-
tamps.

Returns
A trace of the last trace_len phase samples in seconds.

float[] getTraceFrequency()
Provides the relative frequency offset from the average frequency during the last trace_len + 1 averaged
timestamps.

Returns
A trace of the last trace_len normalized frequency error data points in pp1.
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float[] getTraceFrequencyAbsolute(float input_frequency = 0.0)
Provides the absolute frequency offset from a given input_frequency during the last trace_len + 1 averaged
timestamps.

Parameters
input_frequency – Nominal frequency of the periodic signal (default: 0 Hz).

Returns
A trace of the last trace_len frequency data points in Hz.

FrequencyCounter

class FrequencyCounter : public IteratorBase
This measurement calculates the phase of a periodic signal at evenly spaced sampling
times. If the SoftwareClock is active, the sampling times will automatically align with the
SoftwareClockState::ideal_clock_channel. Multiple channels can be analyzed in parallel to compare
the phase evolution in time. Around every sampling time, the time tags within an adjustable fitting_window are
used to fit the phase.

See all common methods
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Public Functions

FrequencyCounter(TimeTaggerBase tagger, channel_t[] channels, timestamp_t sampling_interval,
timestamp_t fitting_window, int n_values = 0)

Parameters

• tagger – Time Tagger object instance.

• channels – List of channels to analyze.

• sampling_interval – The sampling interval in picoseconds. If the Software-
Clock is active, it is recommended to set this value to an integer multiple of the
SoftwareClockState::clock_period .

• fitting_window – Time tags within this range around a sampling point are fitted for phase
calculation.

• n_values – Maximum number of sampling points to store.

FrequencyCounterData getDataObject(int event_divider = 1, bool remove = false, bool channels_last_dim =
false)

Returns a FrequencyCounterData object containing a snapshot of the data accumulated in the
FrequencyCounter at the time this method is called. The event_divider argument can be used to scale
the results according to the current setting of TimeTagger::setEventDivider(). The remove argument
allows you to control whether the data should be removed from the internal buffer or not.

Parameters

• event_divider – Compensate for the EventDivider (default: 1).

• remove – Control if data is removed from the internal buffer (default: True).

• channels_last_dim – Determines the memory layout of the output data (default: False).

– If true, data is stored with channels as the last dimension (row-major order for channels).

– If false, data is stored with channels as the first dimension (column-major order for chan-
nels).

Returns
An object providing access to a snapshot data.

class FrequencyCounterData

Public Functions

timestamp_t[] getIndex()
Index of the samples. The reference sample would have index 0, counting starts with 1 at the first sampling
point.

Returns
The index of the samples.

timestamp_t[] getTime()
Array of timestamps of the sampling points.

Returns
The timestamps of the sampling points.
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timestamp_t[,] getPeriodsCount()
The integer part of the phase, i.e. full periods of the oscillation.

Returns
Full cycles per channel and sampling point.

float[,] getPeriodsFraction()
The fraction of the current period at the sampling time.

Warning

Be careful with adding getPeriodsCount() and getPeriodsFraction() as the required precision
can overflow a 64bit double precision within minutes. In doubt, please use getPhase() with the
expected frequency instead.

Returns
A fractional value in range [0, 1) per channel and sampling point.

float[,] getPhase(float reference_frequency = 0)
The relative phase with respect to a numerical reference signal, typically at the expected frequency. The
reference signal starts at phase 0 at index 0, so the return value of this method is identical to that of
getPeriodsFraction() for index 0.

Parameters
reference_frequency – The reference frequency in Hz to subtract (default: 0.0 Hz).

Returns
Relative phase values per channel and sampling point.

float[,] getFrequency(timestamp_t time_scale = 1000000000000)
The frequency derived from the accumulated phase difference since the last sampling interval. At index 0,
there is no previous phase value to compare with, so the method returns an undefined value NaN.

Parameters
time_scale – Scales the return value to this time interval. Default is 1 s, so the return value
is in Hz. For negative values, the time scale is set to sampling_interval.

Returns
A frequency value per channel and sampling point.

float[,] getFrequencyInstantaneous()
The instantaneous frequency with respect to the current fitting window. This value corresponds to the slope
of the linear fit.

Returns
An instantaneous frequency value per channel and sampling point.

int[,] getOverflowMask()
If an overflow range overlaps with a fitting window, the values are invalid. This mask array indicates invalid
elements and can be used to filter the results of the other getters.

Returns
1 indicates that the sampling point was affected by an overflow range, 0 indicates valid data.
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Public Members

int size
Number of sampling points represented by the object.

timestamp_t overflow_samples
Number of sampling points affected by an overflow range since the start of the measurement.

bool align_to_reference
Indicates if the sampling grid has been aligned to the SoftwareClock.

timestamp_t sampling_interval
The sampling interval in picoseconds.

timestamp_t sample_offset
Index offset of the first sampling point in the object.

bool channels_last_dim
The memory layout of the output data:

• If True, the data is stored with channels as the last dimension (row-major order for channels).

• If False, the data is stored with channels as the first dimension (column-major order for channels).

PulsePerSecondMonitor

Note
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PulsePerSecondMonitor and PulsePerSecondData are part of the Experimental namespace, and their prop-
erties may change in future software versions without further notice. They can be accessed as:
TimeTagger.Experimental.PulsePerSecondMonitor(tagger, reference_channel=1, signal_
→˓channels=[2,3],

filename="output", period=1E12)

class PulsePerSecondMonitor : public IteratorBase
This measurement allows the user to monitor the synchronicity of different sources of 1 pulse per second (PPS)
signals with respect to a reference source. For each signal from the reference PPS source, comparative offsets are
calculated for the other signal channels. Upon processing, a UTC timestamp from the system time is associated
with each reference pulse.

The monitoring starts on the first signal from the reference source and will run uninterrupted until the measure-
ment is stopped. If a signal from a channel is not detected within one and a half periods, its respective offset will
not be calculated but the measurement will continue nonetheless.

By specifying an output file name, the monitoring data can be continuously written to a comma-separated value
file (.csv).

See all common methods

Public Functions

PulsePerSecondMonitor(TimeTaggerBase tagger, channel_t reference_channel, channel_t[]
signal_channels, str filename = "", timestamp_t period = 1E12)

Parameters

• tagger – Time Tagger object instance.

• reference_channel – The channel number corresponding to the PPS reference source.

• signal_channels – A list of channel numbers with PPS signals to be compared to the
reference.

• filename – The name of the .csv file to store measurement data. By default, no data is
written to file (default: “”).

• period – The assumed period of the reference source, typically one second, in picoseconds
(default: 1e12).

PulsePerSecondData getDataObject(bool remove = false)
Returns a PulsePerSecondData object containing a snapshot of the data accumulated in the
PulsePerSecondMonitor at the time this method is called. To remove the data from the internal memory
after each call, set remove to True.

Parameters
remove – Controls if the returned data shall be removed from the internal buffer.

Returns
An object providing access to a snapshot data.

class PulsePerSecondData
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Public Functions

int[] getIndices()
The indices of each reference pulse in the PulsePerSecondData object. The first reference pulse will
have index 0, each subsequent pulse from the reference source increments the index by one. In case of
overflows in the reference channel, this index will be incremented by the number of missed pulses.

Returns
A list of indices for each pulse from the reference source.

float[] getReferenceOffsets()
A list of offsets of each reference pulse with respective to its predecessor, with the period subtracted. For
a perfect PPS source, this offset would always be zero. The offset of the first pulse is always defined to be
zero. If a reference signal is missing, its offset is defined to be NaN.

Returns
A list of the offsets of each reference with respect to the previous.

float[,] getSignalOffsets()
For each reference contained in the PulsePerSecondData object a list of offsets for each signal channel
is given, in the channel order given by signal_channels. If any signal is missing, its offset is defined to be
NaN.

Returns
A list of lists of offsets for each signal_channel for given reference pulses.

float[] getUtcSeconds()
The number of elapsed seconds from the beginning of the Unix epoch (1st of January 1970) to the time at
which each reference pulse is processed, as a floating point number.

Returns
A list of the number of seconds since the Unix epoch to the time of processing, for each
reference pulse.

str[] getUtcDates()
The UTC timestamps for the system time at which each reference pulse is processed, as a string with ISO
8601 formatting (YYYY-MM-DD hh:mm:ss.ssssss).

Returns
A list of the UTC timestamp at processing time, for each reference pulse.

bool[] getStatus()
A list of booleans values describing whether all signals, including from the reference source, were detected.
True corresponds to a complete collection of signals, False otherwise.

Returns
A list of bools describing the signal integrity for each reference pulse.

Public Members

int size
Number of reference pulses contained in the PulsePerSecondData object.
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7.5.7 Time-tag-streaming
Measurement classes described in this section provide direct access to the time tag stream with minimal or no pre-
processing.

Time tag format

The time tag contain essential information about the detected event and have the following format:

Size Type Description
8 bit enum Tag::Type overflow type
8 bit – reserved
16 bit uint16 number of missed events
32 bit int32 channel number
64 bit int64 time in ps from device start-up

TimeTagStream

class TimeTagStream : public IteratorBase
Allows user to access a copy of the time tag stream. It allocates a memory buffer of the size max_tags which
is filled with the incoming time tags that arrive from the specified channels. User shall call getData() method
periodically to obtain the current buffer containing timetags collected. This action will return the current buffer
object and create another empty buffer to be filled until the next call to getData().

See all common methods

Public Functions

TimeTagStream(TimeTaggerBase tagger, int n_max_events, channel_t[] channels)

Parameters

• tagger – Time tagger object instance.

• n_max_events – Buffer size for storing time tags.

• channels – List of channels to be captured.

TimeTagStreamBuffer getData()
Returns a TimeTagStreamBuffer object and clears the internal buffer of the TimeTagStream measure-
ment. Clearing the internal buffer on each call to getData() guarantees that consecutive calls to this
method will return every time-tag only once. Data loss may occur if getData() is not called frequently
enough with respect to n_max_events.

Returns
Buffer object containing timetags collected.

int getCounts()

Returns
The number of stored tags since the last call to getData().

class TimeTagStreamBuffer

7.5. Measurement Classes 163



Time Tagger User Manual, Release 2.18.2.0

Public Functions

timestamp_t[] getTimestamps()
Returns an array of timestamps.

Returns
Event timestamps in picoseconds for all chosen channels.

channel_t[] getChannels()
Returns an array of channel numbers for every timestamp.

Returns
Channel number for each detected event.

int[] getOverflows()

Deprecated:
Since version 2.5. Please use getEventTypes() instead.

int[] getEventTypes()
Returns an array of event type for every timestamp. See, Time tag format . The method returns plain
integers, but you can use Tag::Type to compare the values.

Returns
Event type value for each detected event.

int[] getMissedEvents()
Returns an array of missed event counts during an stream overflow situation.

Returns
Missed events value for each detected event.

Public Members

int size
Number of events stored in the buffer. If the size equals the maximum size of the buffer set in
TimeTagStream via n_max_events, events have likely been discarded.

bool hasOverflows
Returns True if a stream overflow was detected in any of the tags received. Note: this is independent of an
overflow of the internal buffer of TimeTagStream .

timestamp_t tStart
Return the data-stream time position when the TimeTagStream or FileWriter started data acquisition.

timestamp_t tGetData
Return the data-stream time position of the call to TimeTagStream::getData()method that created this
object.

FileWriter

class FileWriter : public IteratorBase
Writes the time-tag-stream into a file in a structured binary format with a lossless compression. The estimated
file size requirements are 2-4 Bytes per time tag, not including the container the data is stored in. The continuous
background data rate for the container can be modified via TimeTagger::setStreamBlockSize(). Data is
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processed in blocks and each block header has a size of 160 Bytes. The default processing latency is 20 ms,
which means that a block is written every 20 ms resulting in a background data rate of 8 kB/s. By increasing the
processing latency via TimeTagger::setStreamBlockSize(max_events=524288, max_latency=1000)
to 1 s, the resulting data rate for the container is reduced to one 160 B/s. The files created with FileWriter
measurement can be read using FileReader or loaded into the Virtual Time Tagger.

The FileWriter is able to split the data into multiple files seamlessly when the file size reaches a maximal size.
For the file splitting to work properly, the filename specified by the user will be extended with a suffix containing
sequential counter, so the filenames will look like in the following example:

fw = FileWriter(tagger, 'filename.ttbin', [1,2,3]) # Store tags from channels 1,2,3
# When splitting occurs the files with following names will be created
# filename.ttbin # the sequence header file with no data blocks
# filename.1.ttbin # the first file with data block
# filename.2.ttbin
# filename.3.ttbin
# ...

In addition, the FileWriter will query and store the configuration of the Time Tagger in the same format as
returned by the TimeTaggerBase::getConfiguration() method. The configuration is always written into
every file.

See also: FileReader , The TimeTaggerVirtual class , and mergeStreamFiles.

See all common methods

Note

You can use the Dump for dumping into a simple uncompressed binary format. However, you will not be able
to use this file with Virtual Time Tagger or FileReader.

Public Functions

FileWriter(TimeTaggerBase tagger, str filename, channel_t[] channels)
Class constructor. As with all other measurements, the data recording starts immediately after the class
instantiation unless you initialize the FileWriter with a SynchronizedMeasurements.

Note

Compared to the Dump measurement, the FileWriter requires explicit specification of the channels.
If you want to store timetags from all input channels, you can query the list of all input channels with
TimeTagger::getChannelList().

Parameters

• tagger – The time tagger object.

• filename – Name of the output file.

• channels – List of real or virtual channels.
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void split(str new_filename = "")
Close the current file and create a new one. If the new_filename is provided, the data writing will continue
into the file with the new filename and the sequence counter will be reset to zero.

You can force the file splitting when you call this method without parameter or when the new_filename is
an empty string.

Parameters
new_filename – Filename of the new file. If empty, the old one will be used (default: empty).

void setMaxFileSize(int max_file_size)
Set the maximum file size on disk. When this size is exceeded a new file will be automatically created to
continue recording.

The actual file size might be larger by one block.

Parameters
max_file_size – Maximum file size in bytes (default: ~1 GByte).

int getMaxFileSize()

Returns
The maximal file size in bytes. See also setMaxFileSize().

int getTotalEvents()

Returns
The total number of events written into the file(s).

int getTotalSize()

Returns
The total number of bytes written into the file(s).

void setMarker(str marker)
Writes a comment into the file. While reading the file using the FileReader, the last marker can be
extracted.

Parameters
marker – An arbitrary marker string to write at the current location in the file.

FileReader

class FileReader
This class allows you to read data files store with FileReader. The FileReader reads a data block of the
specified size into a TimeTagStreamBuffer object and returns this object. The returned data object is exactly
the same as returned by the TimeTagStream measurement and allows you to create a custom data processing
algorithms that will work both, for reading from a file and for the on-the-fly processing.

The FileReader will automatically recognize if the files were split and read them too one by one.

Example:

# Lets assume we have following files created with the FileWriter
# measurement.ttbin # sequence header file with no data blocks
# measurement.1.ttbin # the first file with data blocks
# measurement.2.ttbin
# measurement.3.ttbin
# measurement.4.ttbin

(continues on next page)
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(continued from previous page)

# another_meas.ttbin
# another_meas.1.ttbin

# Read all files in the sequence 'measurement'
fr = FileReader("measurement.ttbin")

# Read only the first data file
fr = FileReader("measurement.1.ttbin")

# Read only the first two files
fr = FileReader(["measurement.1.ttbin", "measurement.2.ttbin"])

# Read the sequence 'measurement' and then the sequence 'another_meas'
fr = FileReader(["measurement.ttbin", "another_meas.ttbin"])

See also: FileWriter , The TimeTaggerVirtual class , and mergeStreamFiles.

Public Functions

FileReader(str[] filenames)
This is the class constructor. The FileReader automatically continues to read files that were split by the
FileWriter.

Parameters
filenames – Filename(s) of the files to read.

TimeTagStreamBuffer getData(int n_events)
Reads the next n_events and returns the buffer object with the specified number of timetags. The FileReader
stores the current location in the data file and guarantees that every timetag is returned once. If less than
n_elements are returned, the reader has reached the end of the last file in the file-list filenames. To check if
more data is available for reading, it is more convenient to use hasData().

Parameters
n_events – Number of timetags to read from the file.

Returns
A buffer of size n_events.

bool hasData()

Returns
True if more data is available for reading, False if all data has been read from all the files
specified in the class constructor.

str getConfiguration()

Returns
A JSON formatted string (dict in Python) that contains the Time Tagger configuration at the
time of file creation.

channel_t[] getChannelList()

Returns
All channels available within the input file

str getLastMarker()
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Returns
The last processed marker from the file (see also FileWriter::setMarker()).

Dump

class Dump : public IteratorBase
Writes the timetag stream into a file in a simple uncompressed binary format that store timetags as 128bit records,
see Time tag format .

See all common methods

Warning

The files created with this class are not readable by TimeTaggerVirtual and FileReader. For storing
time tag data intended for re-reading or postprocessing, use the FileWriter measurement class instead.

Public Functions

Dump(TimeTaggerBase tagger, str filename, int max_tags, channel_t[] channels = channel_t[]())

Parameters

• tagger – Time Tagger object instance.

• filename – Name of the output file.

• max_tags – Stop after this number of tags has been dumped. Negative values will dump
forever.

• channels – List of channels which are dumped to the file (when empty or not passed all
active channels are dumped).

Scope

class Scope : public IteratorBase

The Scope class allows to visualize time tags for rising and falling edges in a time trace diagram similarly to
an ultrafast logic analyzer. The trace recording is synchronized to a trigger signal which can be any physical or
virtual channel. However, only physical channels can be specified to the event_channels parameter. Additionally,
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one has to specify the time window_size which is the timetrace duration to be recorded, the number of traces to
be recorded and the maximum number of events to be detected. If n_traces < 1 then retriggering will occur
infinitely, which is similar to the “normal” mode of an oscilloscope.

See all common methods

Note

Scope class implicitly enables the detection of positive and negative edges for every physical channel specified
in event_channels. This accordingly doubles the data rate requirement per input.

Public Functions

Scope(TimeTaggerBase tagger, channel_t[] event_channels, channel_t trigger_channel, timestamp_t
window_size = 1000000000, int n_traces = 1, int n_max_events = 1000)

Parameters

• tagger – The time tagger object instance.

• event_channels – List of channels.

• trigger_channel – Channel number of the trigger signal.

• window_size – Time window in picoseconds (default: 1 ms).

• n_traces – Number of trigger events to be detected (default: 1).

• n_max_events – Max number of events to be detected (default: 1000).

Event[][] getData()
Returns a tuple of the size equal to the number of event_channels multiplied by n_traces, where each
element is a tuple of Event.

Returns
Event list for each trace.

bool ready()

Returns
Returns whether the acquisition is complete which means that all traces (n_traces) are ac-
quired.

int triggered()

Returns
Returns number of trigger events have been captured so far.

timestamp_t getWindowSize()

Returns
Returns the windows_size parameter.

struct Event
Pair of the timestamp and the new state returned by Scope::getData.
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Public Members

timestamp_t time
Timestamp in ps.

State state
Input state.

enum State
Current input state. Can be unknown because no edge has been detected on the given channel after initialization
or an overflow.

Values:

enumerator UNKNOWN

enumerator HIGH

enumerator LOW

Sampler

class Sampler : public IteratorBase

The Sampler class allows sampling the state of a set of channels via a trigger channel.

For every event on the trigger input, the current state (low: 0, high: 1, unknown: 2) will be written to an internal
buffer. Fetching the data of the internal buffer will clear its internal buffer, so every event will be returned only
once.

Time Tagger detects pulse edges and therefore a channel will be in the unknown state until an edge detection event
was received on that channel from the start of the measurement or after an overflow. The internal processing
assumes that no event could be received within the channel’s deadtime otherwise invalid data will be reported
until the next event on this input channel.

See all common methods
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Note

The maximum number of channels is limited to 63 for one Sampler instance.

Public Functions

Sampler(TimeTaggerBase tagger, channel_t trigger, channel_t[] channels, int max_triggers)

Parameters

• tagger – The time tagger object instance.

• trigger – Channel number of the trigger signal.

• channels – List of channels to be sampled.

• max_triggers – The number of triggers and their respective sampled data, which is stored
within the measurement class.

timestamp_t[,] getData()
Returns and removes the stored data as a 2D array (n_triggers x (n_channels + 1)):

[timestamp of first trigger, state of channel 0, state of channel 1, ...],
[timestamp of second trigger, state of channel 0, state of channel 1, ...],
...

Where the state means:

0 -- low
1 -- high
2 -- undefined (after overflow)

Returns
Sampled data

timestamp_t[,] getDataAsMask()
Returns and removes the stored data as a 2D array (n_triggers x 2):

[timestamp of first trigger, (state of channel 0) << 0 | (state of channel 1) <
→˓< 1 | ... | any_undefined << 63],
[timestamp of second trigger, (state of channel 0) << 0 | (state of channel 1) <
→˓< 1 | ... | any_undefined << 63],
...

Where state means:

0 -- low or undefined (after overflow)
1 -- high

If the highest bit (data[63]) is marked, one of the channels has been in an undefined state.

Returns
Sampled data.
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7.5.8 Helper classes
SynchronizedMeasurements

class SynchronizedMeasurements
The SynchronizedMeasurements class allows for synchronizing multiple measurement classes in a way that
ensures all these measurements to start, stop simultaneously and operate on exactly the same time tags. You
can pass a Time Tagger proxy-object returned by getTagger() to every measurement you create. This will
simultaneously disable their autostart and register for synchronization.

Public Functions

SynchronizedMeasurements(TimeTaggerBase tagger)

Parameters
tagger – The time tagger object instance.

TimeTaggerBase getTagger()
Returns a proxy tagger object which can be passed to the constructor of a measurement class to register the
measurements at initialization to the synchronized measurement object. Those measurements will not start
automatically.

Note

The proxy tagger object returned by getTagger() is not identical with the TimeTagger object cre-
ated by createTimeTagger(). You can create synchronized measurements with the proxy object the
following way:

tagger = TimeTagger.createTimeTagger()
syncMeas = TimeTagger.SynchronizedMeasurements(tagger)
taggerSync = syncMeas.getTagger()
counter = TimeTagger.Counter(taggerSync, [1, 2])
countrate = TimeTagger.Countrate(taggerSync, [3, 4])

Passing tagger as a constructor parameter would lead to the not synchronized behavior.

void start()
Calls IteratorBase::start() for every registered measurement in a synchronized way.

void startFor(timestamp_t capture_duration, bool clear = true)
Calls IteratorBase::startFor() for every registered measurement in a synchronized way.

Parameters

• capture_duration – Acquisition duration in picoseconds.

• clear – Resets the accumulated data at the beginning (default: True).

void stop()
Calls IteratorBase::stop() for every registered measurement in a synchronized way.

void clear()
Calls IteratorBase::clear() for every registered measurement in a synchronized way.

bool waitUntilFinished(int timeout = -1)
Equivalent to IteratorBase::waitUntilFinished() for synchronized measurements.
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Parameters
timeout – Timeout in milliseconds. Negative value means no timeout, zero returns imme-
diately.

Returns
True if the synchronized measurements have finished, False on timeout.

bool isRunning()
Calls IteratorBase::isRunning() for every registered measurement and returns true if any measure-
ment is running.

void registerMeasurement(IteratorBase measurement)
Registers the measurement object into a pool of the synchronized measurements.

Note

Registration of the measurement classes with this method does not synchronize them. In
order to start/stop/clear these measurements synchronously, call these functions on the
SynchronizedMeasurements object after registering the measurement objects, which should
be synchronized.

Parameters
measurement – Any measurement (IteratorBase) object.

void unregisterMeasurement(IteratorBase measurement)
Unregisters the measurement object out of the pool of the synchronized measurements.

Note

This method does nothing if the provided measurement is not currently registered.

Parameters
measurement – Any measurement (IteratorBase) object.

Custom Measurements

The class CustomMeasurement allows you to access the raw time tag stream with very little overhead. By
inheriting from CustomMeasurement, you can implement your fully customized measurement class. The
CustomMeasurement.process() method of this class will be invoked as soon as new data is available.

Note

This functionality is only available for C++, C# and Python. You can find examples of how to use the
CustomMeasurement in your examples folder.

class CustomMeasurement(tagger)

Parameters
tagger (TimeTaggerBase) – TimeTagger object

The constructor of the CustomMeasurement class itself takes only the parameter tagger. When you sub-class
your own measurement, you can add to your constructor any parameters that are necessary for your measurement.
You can find detailed examples in your example folder.
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See all common methods

process(incoming_tags, begin_time, end_time)

Parameters

• incoming_tags – Tag[][struct{type, missed_events, channel, time}], the chunk of time-
tags to be processed in this call of process(). This is an external reference that is shared
with other measurements and might be overwritten for the next call. So if you need to store
tags, create a copy.

• begin_time (int) – The begin time of the data chunk.

• end_time (int) – The end time of the data chunk

Override the process() method to include your data processing. The method will be called by the Time
Tagger backend when a new chunk of time-tags is available. You are free to execute any code you like,
but be aware that this is the critical part when it comes to performance. In Python, it is advisable to use
numpy.array() for calculation or even pre-compiled code with Numba if an explicit iteration of the tags is
necessary. Check the examples in your examples folder carefully on how to design the process()method.

Note

In Python, the incoming_tags are a structured Numpy array. You can access single tags as well as arrays
of tag entries directly:

first_tag = incoming_tags[0]
all_timestamps = incoming_tags['time']

mutex

Context manager object (see Context Manager Types) that locks the mutex when used and automatically
unlocks it when the code block exits. For example, it is intended for use with Python’s “with” keyword as

class MyMeasurement(CustomMeasurement):

def getData(self):
# Acquire a lock for this instance to guarantee that
# self.data is not modified in other parallel threads.
# This ensures to return a consistent data.
with self.mutex:

return self.data.copy()
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CHAPTER

EIGHT

IN DEPTH GUIDES

This section contains articles that provide in depth details on the Time Tagger hardware and software.

8.1 Software-Defined Reference Clock

8.1.1 Overview of synchronization concepts
Like many other instruments, the Time Tagger can be locked to an external clock. However, the Time Tagger offers
two different concepts for synchronization.

Traditional hardware reference clock

If you look at the inputs of your Time Tagger, you will find one labeled CLK or CLK IN. This input allows you to apply
an external frequency reference. If the hardware PLL (Phase-locked loop) of the device accepts the frequency, the Time
Tagger switches to the external reference which takes over the clock role from the internal oscillator. This means that
the FPGA (Field-programmable gate array) of the Time Tagger that performs the TDC (Time-to-digital conversion) is
driven directly by the external clock. But there are three major drawbacks of this concept:

1. The CLK IN only accepts specific frequencies with narrow bandwidth. For example, a Time Tagger Ultra or
Time Tagger X will only accept 10 MHz or 500 MHz. A frequency of 9.5 MHz would already be not accepted.
As a consequence, you will typically be not able to lock your Time Tagger to a laser system, although it might
be desirable to use your laser as the master clock of your experiment.

2. For signals that are strongly correlated to the external reference, the self-calibration of the Time Tagger does not
work properly anymore. The self-calibration relies on the assumption that the incoming events have a random
distribution with respect to the TDC. This is always given if the internal oscillator is used but can fail for an
externally defined FPGA clock.

3. Fixed loop filter in hardware: You cannot configure the cutoff frequency between your external clock and any
built-in reference. For drifting references, e.g., high cutoff frequencies allow a faster tracking of the references.
And for very stable references, low cutoff frequencies support a better white noise suppression.

There are still use cases that make use of the hardware clock (see Synchronizer).

Software-defined reference clock

The alternative and recommended concept is the software-defined reference clock. It has been introduced in software
version 2.10 under the label Software Clock and has been extended in version 2.18 to the Reference Clock. In contrast
to the traditional hardware synchronization, the TDC is always performed with respect to the internal oscillator of the
Time Tagger. The external reference is applied to one of the standard signal inputs. This means, on the hardware level,
it is handled like any other signal. On the software level, however, it is evaluated immediately by a software PLL.
Based on the new time base provided by the PLL, the entire time-tag stream is rescaled. This means that the behavior
of all virtual channel and measurement objects will feel to the user just like the external clock has been applied to the
instrument itself.
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8.1.2 Setting up the software-defined reference clock
After connecting a clock signal to one of the inputs of the Time Tagger, you can declare the respective input as the
system clock by the setReferenceClock() method:

tagger = TimeTagger.createTimeTagger()
tagger.setEventDivider(channel=1,

divider=2)
tagger.setReferenceClock(clock_channel=1, # channel number

clock_frequency=10E6, # frequency in Hz
time_constant=1E-3, # time constant in seconds
wait_until_locked=True)

# This command would be ignored because channel #1 is restricted by the Reference Clock.
# The user receives a warning.
tagger.setEventDivider(channel=1

divider=100)

In this example, a 10 MHz clock has been connected to input 1. One important aspect is that the clock_frequency takes
the actual frequency of the physical signal at the input. While the Reference Clock is active, an Event Divider cannot be
set by setEventDivider(). This means that the Reference Clock is aware of the original frequency before division
and is able to inject events at the place of dismissed events.

The locking behavior of the Reference Clock depends mostly on the time_constant parameter. It determines the time
until the clock settles upon frequency changes. A small time_constant will follow the frequency quickly at the cost of the
advantages of averaging. Large values will provide better average values but the locking might be lost if the frequency
changes to fast. More than that, phase noise will affect your measurements more severely for strong averaging. Finding
the ideal value depends on the characteristics of your reference. If the Reference Clock jumps out of the lock, the Time
Tagger will switch to the overflow mode and timing information is lost.

The following picture demonstrates the effect of the Reference Clock for two signals that are on average 10 MHz. The
picture exaggerates frequency fluctuations and measurement jitter for clarity. The actual Reference Clock would not be
able to lock to such poor signals:

You can see that the input signal on channel #1 oscillates slower in the first half (sparse events) and faster in the second
half (dense signals). For the signal on channel #5, it’s exactly the opposite. Both signals have an additional measurement
jitter that causes very close events and wider gaps at random places.

The lower panel shows the effect of declaring channel #1 as the Reference Clock. If you compare the signals on channels
#1 and #5 from the lower panel to the upper one, you notice that the channel #1 is now quite homogeneous while the
frequency change in channel #5 got even worse. The Reference Clock - and thereby the entire time base of the software
representation - followed the frequency changes of channel #1. Note that on both channels, #1 and #5, the jitter of the
original measurement is still present.

The bottom row shows the ReferenceClockState::ideal_clock_channel. While the Reference Clock cal-
culates the new timebase, it can mathematically identify the expected timestamps of all events, transmitted
and dismissed ones. These “ideal” time tags are separated by a numerically exact time difference. The
ReferenceClockState::ideal_clock_channel is based on channel #1 but almost completely eliminates the mea-
surement jitter. Therefore, it can be used as an improved replacement.

8.1.3 Technical limitations
Before setting up the Reference Clock, you should consider some limitations. We need to answer two questions, namely
which signals you can use as clock signals and which accuracy you can achieve theoretically.
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Input signal limitations

In comparison to the traditional hardware clock that would only accept 10 MHz or 500 MHz on a Time Tagger Ultra,
the software-defined Reference Clock is extremely flexible. On a Time Tagger Ultra and Time Tagger X, it accepts any
frequency from 1 kHz to the maximum frequencies of 475 MHz or 700 MHz, respectively. Tracking and evaluating
periodic signals requires a sufficient internal oscillator, which the Time Tagger 20 is lacking, unfortunately. For this
reason, the Time Tagger 20 will not achieve the performance discussed in this article. As soon as you set up the
Reference Clock on a Time Tagger 20, you will face a warning that the resulting jitter will be bad. Whether this is
acceptable or not, depends on your experiment, but we will not consider the Time Tagger 20 here anymore.

Resolution limitations

The picture above shows the TDEV (Time deviation) of a 1 MHz signal on two inputs. It can be interpreted as the
resolution limit for the various Time Tagger models using the Reference Clock. The TDEV is a metric that can be
measured using the FrequencyStability measurement class. It is an estimator of the timing error you will find on
events of the signal separated by tau under consideration of averaging all available data points. The measurement is
performed by using a power splitter to route the 1 MHz signal to two inputs, 1 and 5. While these split signal is, of
course, phase-locked for all times, the measurement jitter on both inputs is independent. In that sense, the question is:
How much can the individual measurement error be suppressed by averaging?

In the experiment, channel 1 is used as the clock_channel in setReferenceClock(), while channel 5 is investigated
by FrequencyStability. On the left, the tau axis starts at 1 µs, corresponding to the 1 MHz signal. The data point at
1 µs represents the shortest sample of subsequent events possible which does not allow averaging. Thus the data start
on the left on the level of the specified timing-resolution of the respective model. Larger timescales allow for more
and more averaging which improves the timing resolution. The TDEV settles between 100 and 200 femtoseconds for
both, the Time Tagger Ultra and the Time Tagger X. This means, that for both models, there is a more or less common
non-white noise floor. While white noise can be eliminated at a rate of 1√

𝑛
by averaging over 𝑛 events, this is not the

case, e.g., for 1
𝑓 -noise.
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8.1.4 Advanced features
Emulating the Conditional Filter

In most cases it is neither necessary nor desirable to transmit the full clock signal to the PC. For periodic signals like
the clock, the straight-forward way to reduce the data rate would be the EventDivider. For a typical 10 MHz clock, you
can easily apply an event divider of 100 without performance reduction.

But imagine a fluorescence lifetime experiment: A femtosecond-laser (which can be considered a clock as well) excites
a sample, and now and then there will be a photon emitted a few nanoseconds later. In this case, one of the signals is
aperiodic, and the traditional filter solution would be the ConditionalFilter: Every photon will allow exactly one laser
event to pass to the PC. With that, you have pairs of events, in most cases one photon and one laser event. Their time
differences can be easily evaluated by measurements like Histogram .

But this approach has two drawbacks in comparison to the EventDivider approach:

1. You have to sacrifice 50% of your used bandwidth for laser events instead of reducing it by a factor of 100 with
the EventDivider.

2. You cannot exploit the improved temporal resolution of the ReferenceClock on the periodic channel - because
the transmitted signal is not periodic anymore.

For this scenario, the ReferenceClock includes a feature that emulates the ConditionalFilter behavior while it actually
uses the EventDivider. The following code shows how to set up the emulator:

tagger.setEventDivider(channel=1,
divider=100)

reference_clock_state = tagger.getReferenceClockState()
tagger.setConditionalFilter(trigger=[2],

filtered=[reference_clock_state.ideal_clock_channel])
tagger.setReferenceClock(clock_channel=1,

clock_frequency=80E6)

As you can see, the emulator is configured like the hardware ConditionalFilter by setConditionalFilter(). It
works as a modification of the way events are injected in the ReferenceClockState::ideal_clock_channel. The
dismissed events are recreated during the rescaling process and immediately filtered by trigger events. The effect is
shown in the following sketch:

Note that the jitter of the measured laser events is widely eliminated in the ideal clock and that comparatively few events
need to be transferred.

Averaging of rising and falling edges

On the Time Tagger Ultra and Time Tagger X, there is an experimental feature that typically allows to improve the noise
characteristics of periodic signals: By using the TimeTagger::xtra_setAvgRisingFalling() method, you can
configure the Time Tagger such that it transmits the average of a close-by rising and falling edge. This eliminates anti-
correlated noise. Low-frequency noise (e.g. flicker 1/𝑓 ‘) on the analog input voltage shifts the trigger level transitions
in the opposite direction on rising and falling edges (for similar rise vs fall times). For the white noise part (which is
per definition uncorrelated), it yields

√︀
(2). It is not yet fully clear which effects contribute to this improvement but

the graph below clearly shows that this makes it possible to push the TDEV below 100 fs.

8.2 Conditional Filter
The Conditional Filter is a hardware feature that allows you to remove irrelevant time tags carrying no information. In
a typical use case, you have a high-frequency signal applied to at least one channel. Examples include fluorescence
lifetime measurements or optical quantum information and cryptography where you want to capture synchronization
clicks from a high repetition rate excitation laser.
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The Conditional Filter distinguishes between trigger channels and filtered channels. All input channels of your Time
Tagger are fully equivalent and can be used as both, trigger or filtered channels. The data rate of the filtered channels
will be reduced. The reduction is controlled by the trigger channels: Every trigger opens the gate for an event of the
filtered channel. All other events in the filtered channels will be discarded on the Time Tagger and do not need to be
transferred via the USB connection.

Being a hardware feature, the Conditional Filter is not controlled on the level of individual measurements. It is enabled
on the level of your physical device with a typical Python code looking like

import TimeTagger
tagger = TimeTagger.createTimeTagger()
tagger.setConditionalFilter(trigger=[1], filtered=[8])

The details will be explained in the Setup of the Conditional Filter section.

8.2.1 Example configurations
One trigger and one filtered channel

The most fundamental case involves one filtered-channel and one trigger-channel:

tagger.setConditionalFilter(trigger=[1], filtered=[8])

The Conditional Filter discards by default all signals of the filtered-channel. Only the very next event is transmitted
after an event on the trigger-channel. In the example, click 2 opens the gate for click 3. When click 3 passes, it closes
the gate and the subsequent events will be discarded until another event (click 8) occurs in the trigger channel.

Multiple trigger-channels

There is the option to define more than one trigger-channel for the Conditional Filter. As a consequence, the next event
on the filtered-channel is transmitted when there was a event at any of the trigger-channels:

tagger.setConditionalFilter(trigger=[1, 2], filtered=[8])

This is the typical use case when you detect photons with multiple detectors and want to correlate both with the common
excitation laser.

Multiple filtered channels

It is also possible to use the Conditional Filter with one trigger-channel and several filtered-channels:

tagger.setConditionalFilter(trigger=[1], filtered=[7, 8])
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Multiple trigger and filtered channels

In general, you can also combine multiple trigger-channels and multiple filtered-channels:

tagger.setConditionalFilter(trigger=[1, 2], filtered=[7, 8])

This scheme shows two different high-frequency signals on channels #7 and #8. Such cases can occur when you want
to run two completely independent experiments on a single Time Tagger. For instance, channels #1/#7 and #2/#8 may
represent the two experiments. It is not possible to set up two independent Conditional Filters for these groups. The
scheme shown is the only way to apply the Conditional Filter in this case - with the drawback that channel #1 (#2) may
also trigger channel #8 (#7), making the filtering less efficient.
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8.2.2 Understanding the filtering mechanism
The Conditional Filter is a hardware feature that is embedded in a sequence of processing stages. It is important to
understand the order of these stages. Some unexpected results can occur when you are not aware of these mechanisms,
so read the following section with care.

Terms

Input time stamp
This is the time stamp you are interested in: It refers to the time when the input signal transits the trigger level at
the input connector.

TDC time stamp
This is the time stamp the Time Tagger is interested in: It is the raw 64 bit integer the FPGA attributes to a pulse
edge.

Hardware delay
The signal entering the input connector is routed through the Time Tagger into the FPGA where the time to digital
conversion is performed. This route differs from channel to channel and so does the accumulated delay. Because
of this, we need to distinguish between Input time stamp and TDC time stamp. The hardware delay cannot be
controlled by the user, it is defined by the design of the Time Tagger hardware and the FPGA configuration (this
can vary from software release to software release). But don’t worry, the Time Tagger is calibrated to compensate
for this delay. This compensation is done on the device in case of the Time Tagger Ultra and the Time Tagger
X. The Time Tagger 20 can only apply the delay in software (see details below). Except for the purpose of
understanding the Conditional Filter, you do not need to care about the difference.

External delay
Any delay introduced before the Time Tagger, e.g. by cable lengths or optical pathways.

Processing stages

1. Pulse enters the Time Tagger: Up to the input connector, the user is in charge of the external delays. They can
be controlled by changing cable lengths or optical pathways. The time tag generated by the Time Tagger should
therefore represent the temporal order at the input connectors. This is the input time stamp.

2. Time to digital conversion: The pulses propagate through the Time Tagger. They are compared to the trigger
level of the input stage. This results in a high or low logic level. This is still analog information that propagates
to the FPGA. Here, the TDC time stamp is attributed to the pulse edge. The propagation length up to this time
to digital conversion (TDC) differs from channel to channel. It can be compensated in one of the later stages.

3. Adjustable hardware delay (TT Ultra and TTX only!): From software version 2.8.0 on, the Time Tagger Ultra
is able to buffer and reorder the tags before the Conditional Filter. For Time Tagger X, this feature is available from
software version 2.12.0 on. You can set an individual delay for every input stage by setDelayHardware(). This
behaves like an adjustable hardware delay and is calibrated by default to compensate for the physical hardware
delay. It changes the behavior of the Conditional Filter tremendously, as you will see in the next stages.

4. Adjustable deadtime: As a first filter stage, the adjustable deadtime is applied. It acts only on the channel itself,
considering rising and falling edges as two separate channels. After an event in one of the channels occurred,
no other event can appear in the same channel for the defined deadtime. On the Time Tagger 20, the deadtime
can only be set in integer multiples of the FPGA clock cycle of 6 ns with a technically required minimum of one
cycle. Conversely, on the Time Tagger Ultra and Time Tagger X, the deadtime can be set to any integer value
greater than the duration of one FPGA clock cycle, which is 2000 ps and 1333 ps, respectively.

5. Conditional Filter: As a second filter stage, the Conditional Filter is applied. The time tags of trigger chan-
nels and filtered channels are compared. If your device is able to introduce Adjustable hardware delay, this
happens based on the timestamp including the Hardware delay compensation and the additional delay set by
setDelayHardware(). Otherwise, the raw TDC time stamp is used. In both cases, the time order of these
stamps can deviate from the order of the input time stamps that you are dealing with usually. Note: In the edge
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case of events arriving at the same time (dt=0) on a trigger and filtered channel, it is not specified whether the
event on the filtered channel at dt=0 is passed through, or the subsequent, or both.

6. Event Divider: As a third filter stage, the Event Divider can be applied. Only every n-th time tag of the respective
channel is transmitted, all others are dismissed.

7. The bottleneck - USB transfer: The time tags are buffered and transmitted to the PC. At this point, after applying
Conditional Filter and Event Divider, it is important that the resulting data rate on average does not exceed the
maximum data rate.

8. setDelaySoftware: From now on, the Time Tagger hardware is not involved anymore. If your device does not
provide an adjustable hardware delay, the software compensates now the TDC time stamp for the hardware delay
to provide you the input time stamp (it is possible to disable the hardware delay compensation, see Control
hardware delay compensation). In any case, you can modify this compensation by setDelaySoftware().

9. Delayed Channel: The most flexible way to control the relative delay of your signals are Virtual Channels.

Consequences

The nature of the filtering process can produce counterintuitive results that need to be handled. We will explore these
cases based on the example of a fluorescence lifetime measurement. The sample is excited by a pulsed laser with a
repetition rate of 80 MHz (period of 12.5 ns), the laser synchronization signal is connected to channel #8. So channel
#8 is the high-frequency input that needs to be filtered. Fluorescence photons are collected by a single-photon detector
connected to channel #1 that will trigger the Conditional Filter. We set up a correlation measurement and look at
different cases:

TimeTagger.Correlation(tagger, 1, 8)

Case 1: Without the Conditional Filter set up, the Correlation measurement class provides a periodic signal. The
periodicity is a result of the multi-start/multi-stop approach of the Correlation measurement: A click on the detector
will contribute together with any laser synchronization pulse to the correlation, not only with the one that actually
stimulated the photon. Without the Conditional Filter, there will be a laser time tag every 12.5 ns. Because this high
frequency cannot be transferred for a long time, buffer overflows will lead to discarded data.

Case 2: With the Conditional Filter on, the data rate is highly reduced at the cost of losing the full periodicity of the
signal:

tagger.setConditionalFilter(trigger=[1], filtered=[8])

Now we observe that the majority of the events is in the range of a few nanoseconds. However, the signal does not
look like expected: Instead of a signal resembling one of the peaks from Case 1, a double peak appears. If you look
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carefully at the signal, you can see that the lifetime curve is cut along the dotted line and one part is shifted by one period.
This indicates that the physical delay between the input channels is not designed properly. The scheme illustrates the
problem:

The dashed line indicates which pulse excited the sample. If the photon is emitted early by the sample (click 2), it will
trigger the first pulse (click 3) after the stimulating one (click 1). In the second case, the photon is emitted late and the
subsequent laser pulse (click 7) has already passed. In this case, click 9 is passed and click 8 seems to be very early,
although it is quite late, in fact.

Case 3: To align the signal properly, having the signal in between two laser events, the strategy depends on your device:
With Time Tagger Ultra (with software version 2.8.0 and later) and Time Tagger X (with software version 2.12.0 and
later), you can use setDelayHardware() to align your signals. In the case of a Time Tagger 20, however, you need
to adjust your external delays. You might either modify optical path lengths or use cables of different lengths.

Case 4: This case illustrates that the height of the higher-order peaks is determined by the count rate of your detector.
The relative height (compared to the center peak) is proportional to the probability for a laser synchronization pulse
to pass the Conditional Filter in the higher-order period. This probability is given by the probability that a detector
click occurs in the respective period and gates the synchronization click. In Case 1, without the Conditional Filter, the
probability is 100% - every synchronization pulse is passed. For Case 2 and Case 3, the probability has been set to
10%, in Case 4 it has been increased to 40%.

Note

In Cases 3 and 4, with external delays well adjusted to each other, you can see a signal at negative times. How
is this possible? Wouldn’t this mean that the laser synchronization click arrived earlier than the photon click that
gated it? Does my Time Tagger violate causality?

The answer is: No, it does not. The occurrence of negative delays is caused by the difference between the input time
stamps and the TDC time stamps. Negative delays occur in input time stamps, but causality must only be obeyed in
TDC time stamps (plus adjustable onboard delays, if available). The occurrence of negative delays indicates that
the hardware delay of channel #8 (laser synchronization) is larger than that of channel #1 (detector).

8.2.3 Setup of the Conditional Filter
The setConditionalFilter()method expects two arguments, trigger and filtered, and accepts the optional boolean
argument hardwareDelayCompensation:

tagger.setConditionalFilter(trigger: list[int],
filtered: list[int],
hardwareDelayCompensation: bool = True)

The effect of trigger and filter can be reviewed in the Example configurations section.
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Control hardware delay compensation

With the argument hardwareDelayCompensation you can decide whether the hardware delay is compensated or not.
This means, in fact, that you can decide whether you work with input time stamps or with TDC time stamps. If your
device supports adjustable onboard delays, you should never set this value to False and you can ignore this section.

hardwareDelayCompensation = True (default)

Pros

• Time tags are provided in the way you are used to it

• The signal position will not depend on the software version

Cons

• Negative time differences can occur between trigger-channel and filtered-channel and seemingly vio-
late causality

hardwareDelayCompensation = False

Pros

• Provided Time tags will be in the same temporal order as for the ConditionalFilter, no negative time
differences will occur

Cons

• Signal positions may change upon software update

• Affects all channels, not only the ones listed in trigger and filtered.

Disable the Conditional Filter

To disable the Conditional Filter, you can either pass an empty lists or use the clearConditionalFilter()method:

tagger.setConditionalFilter([], [])
# or
tagger.clearConditionalFilter()

8.3 Raw Time-Tag-Stream access
There are several ways to access the raw time tags with the Time Tagger API. They can be split into two categories:
dumping together with post-processing and on-the-fly processing. Both ways will be explained in the following. They
are not exclusive so that you can combine them, also, with other measurements from our API in parallel.

8.3.1 Dumping and post-processing
All incoming time tags or selected channels of the Time Tagger can be stored on the hard drive via the FileWriter.
Please visit the documentation and the provided programming examples of FileWriter for further details.

There are two ways for post-processing the dumped data:

File Reader

By reading in the stored time tags with the FileReader, the tags stored can be processed natively in your preferred
programming language. You find examples of how to use the FileReader in your examples folder.
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Virtual Time Tagger

The second option to process stored time tags is the Time Tagger Virtual. The Time Tagger Virtual allows you to use
the full Time Tagger API to post-process your data. You find examples of how to use the Time Tagger Virtual in your
examples folder.

8.3.2 On-the-fly processing
There are two options to process raw incoming data, the TimeTagStream and the CustomMeasurement, which will
be explained in the following:

TimeTagStream - high-level, lower performance

The TimeTagStream buffers the incoming raw data for on-the-fly processing. The TimeTagStream buffer must be
polled to retrieve the tags. You find examples of how to use the TimeTagStream in your examples folder.

CustomMeasurement - low-level, higher performance

The CustomMeasurement functionality allows you to access the raw time tag stream with very little overhead.
By inheriting from CustomMeasurement, you can implement your fully customized measurement class. The
CustomMeasurement.process()method of this class will be invoked as soon as new data is available. Note that this
functionality is only available for C++, C#, and Python. You find examples of how to use the CustomMeasurement in
your examples folder.

CustomVirtualChannel - modify the time tag stream - C++ only

It is now possible for you to modify the time tag stream, like our API does by inserting time tags, e.g., via Coincidence
or DelayedChannel. If you want to use this functionality, please contact Swabian Instruments support.

IteratorBase - C++ only

All measurements and virtual channels are derived from the IteratorBase class. You can see how to access the time
tag stream on the deepest level with the provided C++ examples.

8.4 Synchronization of the Time Tagger pipeline
In order to achieve a real-time evaluation of the events with high data rates, the Time Tagger series uses a pipeline
based parallel processing.

The hardware records a timestamp for every incoming event and stores it in a large on-device buffer. The size of this
buffer can be configured with setHardwareBufferSize(). The buffer contents are read by computer over USB,
typically in blocks of 128k events or when the time between the blocks exceeds 20 ms. Waiting until a block of data
is available is aimed at optimizing the USB throughput while limiting the time between consecutive block allows for
reducing data latency on slow event rates. The block size can be tuned by a user with setStreamBlockSize(). On the
computer, the blocks of data are processed by all running measurements in the order in which the measurements were
created. Only one measurement has access to a block at any given time. Once a measurement has finished processing
the block, it is ready to process the next block while the previous block becomes available to the next measurement.

Naturally, the transferring and processing of the data takes time and results in the latency. The latency between signal
arrival and its appearance in the measurement data is usually below 100 ms; however, it can become as large as a few
seconds if the on-device buffer fills up faster than the computer can transfer and process the data.

Proper operation of the pipeline and the control of the device parameters requires a suitable synchronization method.
Time Tagger uses the concept of fencing. A fence is a unique identifier that is sent by the software to the hardware. It is
added at the end of the on-device buffer data, streamed back to the computer along with timestamp data, and processed
by all measurement classes. Once the Time Tagger software detects the fence, it knows that it is located at the data
position which was in the buffer when the fence was created. The usefulness of fencing is easily demonstrated with a
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following example. When you create a measurement, you expect that it starts processing data from that very instance
of time; however, it starts processing the data, which was recorded earlier and is already available in the buffer. With
fencing, the measurement creates a fence and begins data accumulation only when it receives the fence back. In this
way, the measurement is dealing with the data recorded as close to the measurement creation as possible and avoids
processing of the older data.

You can use the fencing mechanism manually. First, you have to create a new fence with getFence() and then wait
for it to be signaled with waitForFence() at any time later. If you want to create a fence and immediately wait for it
then using the sync() method is more convenient.

8.5 FPGA link

Warning

The reference design and the on-the-wire format are not stable and will be subject to incompatible changes with
further development.

The FPGA link output of the Time Tagger X allows you to connect an FPGA of your own design to the Time Tagger X
via an Ethernet-based protocol and benefit from higher data throughput and lower latency compared to USB.

In a typical use case, you want to use either process tags at a higher rate than the USB connection to the PC allows or
integrate the measurements into a test fixture and trigger events based on the measurements.

The SFP+ port on the Time Tagger X can be used either with a DAC or fiber transceivers to connect to your own FPGA.
We recommend using the OpalKelly XEM8320 for your custom design.

The QSFP+ port on the Time Tagger X should be used with a fiber transceiver to connect to your own FPGA. We also
recommend using the OpalKelly XEM8320 together with the SZG-QSFP for your custom design.

Note

We recommend using the SFP+ port unless the higher bandwidth is necessary.

Warning

There is currently no retransmission support so if corruption occurs during transmission, tags will be permanently
lost. Please verify that your data link is of high quality or that tag loss can be tolerated.

8.5.1 Getting Started with SFP+
To enable the FPGA link output of the Time Tagger use enableFpgaLink(). Start by enabling the FPGA link on
channel 1:

import TimeTagger
tagger = TimeTagger.createTimeTagger()
tagger.enableFpgaLink([1], "", TimeTagger.FpgaLinkInterface.SFPP_10GE)

To receive the tags, use our Time Tagger FPGA link reference design. Follow the instructions in the XEM8320
README to build the reference design. Connect the SFP+ port on the Time Tagger X to the SFP 1 port on the
XEM8320 and load the bitstream on the XEM8320. You should now be able to observe the LED D1 on the XEM8320
matching the input state on channel 1 of the Time Tagger X.
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To verify the link quality, activate a test signal as follows:

tagger.setTestSignal([1], True)

and reload the bitstream on the XEM8320. LED D6 should stay dark, indicating that the channel 1 events are arriving
at the expected time without drops.

8.5.2 Using QSFP+
QSFP+ is quite similar to using SFP+. Start by enabling the FPGA link for the QSFP+ interface for input channel 1 of
the Time Tagger X:

import TimeTagger
tagger = TimeTagger.createTimeTagger()
tagger.enableFpgaLink([1], "", TimeTagger.FpgaLinkInterface.QSFPP_40GE)

Similarly use our Time Tagger FPGA link reference design, but follow the instructions in the README for the QSFP+
interface.

Connect the QSFP+ port of the Time Tagger X with the SZG-QSFP module which has to be connected to Port E of the
XEM8320. You should now be able to observe the LED D1 on the XEM8320 matching the input state on channel 1 of
the Time Tagger X.

Note

Using the reference design with QSFP+ requires the Xilinx EF-DI-LAUI-SITE IP core license. We recommend
starting with the SFP+ connection.

Warning

Only one output is active at the same time. Enabling the QSFP+ port disables the SFP+ port and vice-versa.

8.5.3 Modifying the reference design
Follow the instructions in Building you own design.
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CHAPTER

NINE

USAGE STATISTICS COLLECTION

You can help us developing and improving the Time Tagger by enabling automated usage statistics collection. The
usage statistics data collection is designed to help us better understand how the Time Tagger hardware and software
are used. This data includes the performance indicators, configuration, the state of the Time Tagger, and API usage
patterns.

The usage statistics data is pseudonymized1 and cannot be linked to a specific user or specific hard-
ware unit. On installation of the Time Tagger software, a random user_id will be created and added
to the usage statistics reports. Users can review the contents of usage statistics data by using the
getUsageStatisticsReport(). Also users can disable usage statistics data collection at any time via Time Tag-
ger API as setUsageStatisticsStatus(UsageStatisticsStatus.Disabled). It is possible to enable the usage
statistics collection temporarily and without automatic uploading which may be helpful for debugging.

9.1 Contents of the usage statistics data
• Internal calibration data.

• Hardware sensor data obtainable with getSensorData() but with the serial number obscured.

• Time Tagger’s configuration as returned by getConfiguration() but with the serial number obscured.

• All warning and error messages produced by the Time Tagger software. All identifying information like serial
numbers is obscured.

• Average, minimal, and maximal aggregate data rate sent over USB in each usage session.

• Usage and configuration of the measurements and their performance indicators.

• Computer’s processor name and capabilities, as well as the RAM size.

9.2 Ways of control
During software installation on Windows, you will be asked whether you want to join the Time Tagger improvement
program. On Linux, usage statistics collection is disabled by default, and no explicit choice is requested during installa-
tion. You can enable, disable, or modify the usage statistics behavior at any later time using the programming interface
(see below). Alternatively, on Windows, you can also change your decision by re-installing the Time Tagger software.

The following examples show how to perform key operations of enabling, disabling, and retrieving the usage statistics
data. See also Usage statistics functions.

1 Here “pseudonymized” means that the user retains privacy of their data and remain unidentified as long as their user_id (pseudonym) is not
matched to their personal identity.
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Get and set usage statistics collection status

# 0 - UsageStatisticsStatus.Disabled
# 1 - UsageStatisticsStatus.Collecting
# 2 - UsageStatisticsStatus.CollectingAndUploading
status = getUsageStatisticsStatus()

# Enable usage statistics collection without uploading
setUsageStatisticsStatus(UsageStatisticsStatus.Collecting)

# Enable usage statistics collection with uploading
setUsageStatisticsStatus(UsageStatisticsStatus.CollectingAndUploading)

# Disable usage statistics collection
setUsageStatisticsStatus(UsageStatisticsStatus.Disabled)

Get current usage statistics data

json_string = getUsageStatisticsReport()

9.3 Time Tagger Lab diagnostics
When Time Tagger Lab is used, it can automatically send application error reports and related diagnostics (later: “ap-
plication error diagnostics”), as described in the EULA. Users can enable/disable sending application error diagnostics
and sending Time Tagger usage statistics independently. By default sending application error diagnostics is enabled
when sending usage data is enabled.

192 Chapter 9. Usage Statistics Collection



CHAPTER

TEN

SAFETY & COMPLIANCE

10.1 Safety and compliance guidelines
This section provides essential safety information, operating conditions, and compliance guidelines for the proper use
and handling of all Swabian Instruments Time Tagger devices. Please review this section carefully before installation,
operation, or maintenance of the device.

10.1.1 Symbols

Caution: general warning

Caution: high voltage

Functional earth

10.1.2 Operation environment
The Time Tagger is designed for operation in a clean and dry indoor laboratory environment by qualified personnel.
The product or its external components shall not be exposed to corrosive and/or flammable substances, liquids, or
extreme heat. Do not operate with high dust and humidity levels.

Table 1: Operation environment conditions

Parameter Value
Temperature +5 °C to +45 °C
Relative humidity < 80 %, no condensation
Maximum altitude 2000 meters
Protection level IP 20 (IEC 60529)

10.1.3 Electrostatic-sensitive device
The Time Tagger is a sensitive electronic device and must be handled with care. The input and output circuitry of the
Time Tagger may be damaged by an electrostatic discharge, or their functionality may be impaired. Take appropriate
precautions to minimize the risk of an electrostatic discharge into the connections or signal wiring during the installation
and operation of the Time Tagger.
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The Time Tagger is sensitive to electrostatic discharge! Take appropriate protective measures when
performing system installation or maintenance.

Cleaning

Before cleaning the Time Tagger, please make sure that it has been switched off and disconnected from all electrical
connections. Clean the outer housing with a soft, lint-free dust cloth. No parts of the Time Tagger may be cleaned with
chemical cleaning agents.

10.1.4 Disposal and recycling

Never dispose of the Time Tagger with the household waste. Please inform yourself about
the local rules for the separate collection of electrical and electronic products.

10.1.5 Contact, support and service
Swabian Instruments GmbH can be reached directly via phone, email or per post.

Swabian Instruments GmbH
Stammheimer Straße 41
70435 Stuttgart
Germany

+49 711 400 479-0
info@swabianinstruments.com
https://www.swabianinstruments.com

10.2 Time Tagger X safety notice
Swabian Instruments’ Time Tagger X is a high-resolution streaming time-to-digital converter in a 19-inch rack mount-
able housing. This section gives further information on the Time Tagger X and its operation.
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10.2.1 Electrical characteristics

Table 2: Power supply ratings

Parameter Value
Voltage 100 - 240 V AC
Frequency 47-63 Hz
Power max. 60 W

The maximum voltage and current ratings of the signal inputs and outputs are specified on the Time Tagger X’s housing
and must not be exceeded. The details on the characteristics of the input channels can be found in the dedicated section
Input channels.

10.2.2 Equipment installation
The Time Tagger X does not require assembly and is supplied fully assembled. It can be installed as a table top
instrument or in a standardized 19-inch rack. Any operating position shall provide adequate space for cable connections
and air circulation.

A table top installation requires an even and horizontal surface with enough space for easy access to the device.

Installation in a standardized 19-inch rack requires 2 height units. The rack shall provide sufficient ventilation and must
not obstruct the ventilation openings of the Time Tagger X’s rear panel.

Position the Time Tagger X in a manner that allows the user to disconnect the device from the mains at any time and
without restrictions.

Before connecting to the mains, inspect the product and the power cord for visible damage. Connection to the mains
shall be done only with the supplied detachable power cord. In case of doubt, do not operate the product and seek
assistance from a qualified electrician or a person responsible for electrical safety.

Safe operation can no longer be assumed:
- after rough handling during transport or installation,
- in case of visible damage to the product or its power cord,
- in case of loose internal parts being noticed,
- in case of ingress of any liquids inside the product’s housing.

The Time Tagger X provides one functional ground terminal on the rear panel located next to the power cord recepta-
cle. All connectors that feature ground terminals are electrically connected to the Time Tagger X housing and to the
functional ground terminal. This includes shield terminals on the SMA connectors and the USB-C connector.

Take care of appropriate grounding practices and ensure that all connected accessory and equipment shares common
ground with the Time Tagger X. Connection of additional accessories or equipment that are grounded to an indepen-
dent grounding circuit has the potential risk of electrical shock. An inappropriately grounded Time Tagger X and/or
connected equipment may result in product damage, malfunction, degraded performance or poor signal quality.

After connecting the Time Tagger X to the mains, it will be in a “Standby” power mode, as indicated by the power
button light pulsating blue. Press the power button to switch the product into the “Ready” state - the power button light
will turn green. By pressing the power button again, the Time Tagger X can be switched back into the “Standby” power
mode.
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Fig. 1: View of the Time Tagger X rear panel.

Power state button
Standby: Blue
Ready: Green

Fig. 2: View of the Time Tagger X front panel with power state button indicated.

The Time Tagger X produces waste heat during regular operation. Long-term continuous operation at elevated envi-
ronment temperatures may lead to a warm product surface, this is not a malfunction. Stop operation immediately and
contact the manufacturer in case the product’s surface temperature exceeds 55 °C (hot on brief touch).

10.2.3 Maintenance and repair
The Time Tagger X does not contain any user-serviceable or user-repairable parts. In case of malfunction or damage,
stop operating the Time Tagger X, disconnect it from the mains and contact the manufacturer.

The Time Tagger X may only be opened by personnel authorized by the manufacturer.
Disconnect the Time Tagger X from the mains before opening it and working on the internal components.
Otherwise the personnel may be exposed to the risk of electric shock.
Adjustments, replacements of parts and repair may be carried out only by personnel authorized by the
manufacturer.

All Time Tagger X units repaired by the manufacturer undergo verification and testing procedures in the same way
as new units. The electrical safety of every new and repaired Time Tagger X is verified with a Gossen Metrawatt
SECUTEST PRO testing instrument.

Power cord

The detachable power cord must be adequately rated for the operation voltage and power consumption of the Time
Tagger X, see the table Power supply ratings.
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It is strictly forbidden to use a damaged power cord or a cord with inadequate ratings. In case of doubt,
do not operate the product and contact the manufacturer or seek for assistance from a trained electrician
or a person responsible for electrical safety.

Safety fuse

The Time Tagger X is equipped with a mains fuse located on the rear panel beneath the power cord receptacle. The
fuse compartment can only be accessed when the power cord is detached from the Time Tagger X. The fuse type and
fuse rating must comply with the specification in the table Safety fuse ratings and the labeling on the Time Tagger X.

Table 3: Safety fuse ratings

Parameter Value
Voltage Rating 250 V AC
Current Rating 500 mA
Dimensions 5 x 20 mm
Response Time Slow Blow
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CHAPTER

ELEVEN

REVISION HISTORY

11.1 V2.18.2 - 07.05.2025
Bug fixes

• Fixes a crash when aborting a HistogramLogBins measurement.

• Fixes a memory leak when starting a Time Tagger Network server in Time Tagger Lab.

• Fixes a crash when resetting a Time Tagger Lab workspace saved in a OneDrive synchronized folder.

• Fixes a channel mapping bug in Time Tagger Network when transferring low data rates in a multi-server config-
uration.

11.2 V2.18.0 - 23.04.2025
Highlights

• Support for Virtual Channels Coincidences, GatedChannel and DelayedChannel in Time Tagger Lab.

• Multi-server time tag stream merger with TimeTaggerNetwork .

• 20 channel support for the Time Tagger X.

Time Tagger

• Introduces ReferenceClock as an improvement over SoftwareClock to allow for synchronization with 1PPS sig-
nals and reconstruction of the original frequency.

• Adds a Raspberry Pi installer for TimeTagger software.

• Documentation: unifies the online user manual and the C++ API user manual into a single document.

• Documentation is now built into our Python and C# wrappers (via pydoc and XML).

• New tutorials for Time Tagger Lab and Remote synchronization.

Time Tagger Lab

• Introduces manually adjustable plot limits.

• Adds option to switch between Counter and FrequencyCounter as the auxiliary graph.

• Fixes unreliable behavior when using multiple monitors with different screen scaling settings.

• Visual improvements when using Synchronized devices.

• Includes several smaller UI and stability improvements.
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Support and compatibility

• Removes installer for 32 bit Windows.

• Drops support for Ubuntu 18.04 and replaces CentOS 8 with AlmaLinux 8.

• Adds support Debian Bookworm (amd64 and arm64) and for AlmaLinux 9.

• Adds support for C# on Linux (not on Ubuntu 20.04 and Raspberry Pi).

• Adds support for Numpy 2.0 on all Linux distributions.

Improvements

• Adds the method setServerAddress() for binding to a single network interface.

• Adds the method getServer() providing a proxy object with the TimeTaggerHardware interface to control
the Time Tagger device connected to the server.

• Adds the method Combinations::getChannels() to query many virtual channels at once.

• Adds the methods getTriggerLevelRange(), getDeadtimeRange() and getDelayHardwareRange() to
query hardware limitations.

• Adds the enum AccessMode::SynchronousListen to Time Tagger Network for delivering data synchronously
to clients while restricting control settings and exposing only a limited set of channels.

• Improves the performance of FileWriter and HistogramLogBins.

• Fixes a slowdown of FrequencyStability on Windows with small values for the average parameter.

• Fixes the instantiation of FrequencyStability in LabView.

• Fixes input registration and unregistration by measurements if some requested channel numbers are not available.

• Fixes the behavior of Countrate with Error events.

• Fixes the generation of MissedEvents in Listen mode on overload conditions for TimeTaggerNetwork.

API changes

• New API for the Time Tagger Virtual: Specify the files in createTimeTaggerVirtual() and call run() after
creating all measurements.

• Split TimeTagger in the two interfaces TimeTaggerSource for controlling the on-device timestamp manipu-
lation modules and TimeTaggerHardware for controlling the physical parameters of a Time Tagger device.

• Support for setTestSignal and getTestSignal has been removed from SynchronizedMeasurements and
deprecated in TimeTaggerVirtual.

• freeTimeTagger() no longer supports a Boolean return value in all programming interfaces (except C# and
Labview, for backward compatibility reasons). This value was used to test whether a TimeTagger in singleton
mode had been properly freed, however singleton mode has been deprecated since v2.7.2.

• C#: Throws ArgumentOutOfRangeException instead of ApplicationException on unsupported function argu-
ments.

• Deprecates getDACRange() and setSoftwareClock().

• Renames waitForCompletion() to waitUntilFinished() to match the method name of measurements.

• Splits the former single C++ measurements header in one file per measurement.
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11.3 V2.17.6 - 21.01.2025
Highlight

• The maximum default block size is increased to 1 million events on the Time Tagger Ultra and Time Tagger
X. With the default settings, the respective maximum transfer rates exceed 90 MTags/s.

11.4 V2.17.4 - 17.07.2024
Improvement

• Python: adds support for NumPy 2.0.0 (for Python versions on Linux that support NumPy 2.0.0, rebuilding the
Python wrapper may be necessary. See our documentation for more details).

11.5 V2.17.2 - 02.07.2024
Improvement

• Adds support for Ubuntu Long Term Support release 24.04.

• Adds abort() for a non-blocking hint to abort measurements quickly.

• Adds a tutorial for ODMR measurements.

Time Tagger bug fixes

• Fixes wrong initial UTC time stamp in PulsePerSecondMonitor and improved formatting in its data export
file.

• Fixes HistogramND for N > 4.

• Fixes a bug with missing time tags when multiple small saved files are merged and replayed.

Time Tagger Lab bug fixes

• Fixes a crash when switching between FileWriter and other measurements.

• Adds missing data export option for PulsePerSecondMonitor and FrequencyCounter.

• Fixes visualization of available HighRes channels for Time Tagger X on the landing page.

• Fixes a bug when stopping and restarting the Logarithmic Histogram DLS simulation.

• Fixes a crash in the application’s window docking manager.

• Includes several smaller UI and stability improvements.

11.6 V2.17.0 - 22.04.2024
Highlights

• With the new FrequencyCounter measurement, the Time Tagger becomes a full feature Omega-type frequency
counter.

• The new PulsePerSecondMonitor measurement allows to monitor the synchronicity of different PPS sources.

• The support of variable integration time per bin in HistogramLogBins provides the accurate g2 normalization
with immediate start and gated inputs.

• Improve the performance of the Synchronizer to reach the full 80 MTags/s per device.
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Improvement

• New virtual channel Combinations for exclusive coincidences.

• Adds support for the Python Stable ABI to support Python 3.12 and likely many more further releases.

• Adds support for the MinGW C++ ABI for the MINGW32 and UCRT64 environment.

Time Tagger Ultra and Time Tagger X

• Significantly reduced on-device latency noticeable both over USB and FPGA link.

• Support for high priority input channels, which will still be transmitted while in overflow domain.

• The timestamps of rising and falling events can be averaged on hardware for a higher precision of events.

• Enhanced version of the deadtime filter, which can be configured with any dead time in picosecond preci-
sion.

Time Tagger X

• Full support for the High-Resolution mode on the Time Tagger X with a timing jitter of 1.5 ps RMS per channel.

• Support for the QSFP+ FPGA link with a data rate of 1200 MTags/s.

• Support for the readout of more device sensors on the hardware.

• The self verification of the hardware input stage of the built-in test signal is reverted on the Time Tagger X.

• All input ports stay at the high-impedance mode before their first usage and after freeTimeTagger().

• Changes the default hysteresis from 1 mV to 20 mV.

Time Tagger Ultra

• Adds support for Time Tagger Ultra with hardware revision 1.8.

• The improved auto-calibration for periodic signals and its error handling is backported from the Time Tagger X
to the Time Tagger Ultra.

• Improves the USB performance for many aligned inputs.

Time Tagger Lab features and enhancements

• Improved and more informative landing page layout.

• Existing measurements can now be cloned easily (by right clicking).

• The live countrate is now visible in the detailed device view.

• Application window positions and the measurement list order are now saved to workspace.

• A notification appears when the measurement dead time is automatically adjusted to a multiple of the Time
Tagger clock.

• New startup command line options –select-device and –start-measurement.

• Maximum file size for the FileWriter measurement is now shown in megabytes.

• “Force high impedance” option for Time Tagger X start-up without impedance switch.

• Many smaller UI improvements and fixes.
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Time Tagger Lab bug fixes

• Fixed various crashes related to device license checks, sending feedback and exporting large data sets to file.

• Fixed occasional misaligned axis ticks and missing axis ticks when zooming in.

• Fixed limited application visibility for high screen scaling settings.

• Fixed occasionally missing chart cursor values.

• Changed logarithmic axis labels from E^ to 10^.

11.7 V2.16.2 - 28.06.2023
Time Tagger hardware support

• Adds support for Time Tagger 20 with hardware revision 2.5.

• Adds support for Time Tagger X with hardware revision 1.2.

Time Tagger bug fix

• Fixes Counter showing wrong values when the same channel is used multiple times, now throwing an exception
on creating.

• Fixes FileReader in MATLAB not loading the .NET Assembly in its constructor. All measurement classes
now load the assembly.

Time Tagger Lab

• Fixes non-visible numbers for cursor values.

• Moved legend of Counter time trace to the top left.

• Higher precision formatting values when necessary.

11.8 V2.16.0 - 05.06.2023
Highlights

• Time Tagger Lab: Virtual Antibunching and Fluorescence lifetime setups.

Time Tagger Lab features and enhancements

• Antibunching and Fluorescence lifetime setups and corresponding simulation measurements. The detector sig-
nals are fully simulated for those measurements and no physical detectors are needed.

• Option to suppress counts for dt=0 with autocorrelation measurements.

• Notification that software updates are available.

• Improved crash and error reporting.

• Improved ticks and labels of logarithmic plots.

Time Tagger Lab bug fixes

• Fixed various crashes related to exporting data, opening a message box, and creating log files.

• Fixed Histogram 2D export.

• Fixed auto-restarting with no-plot measurements on configuration change.
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• Missing log-y labels and ticks are added to chart display.

Improvement

• Adds support for Python 3.11.

• The built-in test signal verifies the hardware input stage on Time Tagger X starting from hardware revision 1.1.

Bug fixes

• Fixes fan information of getSensorData() on the Time Tagger Ultra.

• Fixes the support for Time Time Tagger Ultra devices with the serials starting with 17.

• Fixes GatedChannel, FrequencyMultiplier and TriggerOnCountrate to switch to the initial state on
clear() and startFor().

• Fixes autoCalibration() to clear the old calibration data.

• Fixes the error handling on Linux if parts of the Python wrapper are missing.

• Fixes a one bit out of bounds memory access on verifying the hardware license.

• Fixes the jagged array handling of the MATLAB Wrapper for Coincidences.

11.9 V2.15.0 - 06.03.2023
Highlights

• Rework of the MATLAB wrapper, now reflecting the full functionality of the Time Tagger API.

MATLAB wrapper

• Supports class inheritance, new TT classes are closer to their C++, and Python counterparts.

• Supports creation of TimeTagger objects via createTimeTagger.

• Supports native MATLAB enums.

• Supports jagged arrays via conversion from/into MATLAB cells.

Behavior change

• Disallow an event divider value of 0. Please use 1 instead.

• MATLAB: Removed MATLAB app designer examples.

Other Changes

• Updated Opal Kelly Frontpanel library to 5.2.12.

Bug fixes

• Python: Fix return type annotation for createTimeTagger().

• Fixes certain deadlock issues in MATLAB caused by asynchronous functions.

• Fixes the overflow tracking with a USB error while in overflow.

• Fixes handling of tags with respect to <-> missed events at the timestamp of an OverflowBegin error.

• Counter: Fixes a transpose issue of the NaN generation in getDataNormalized().
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• FrequencyStability: Fixes an integer overflow in the MDEV / TDEV calculation.

• Fixed issue with LicenseRequestGenerator.exe not working on some systems.

Time Tagger Lab features and enhancements

• Device LEDs can be switched on and off (not Time Tagger 20).

• Improved setting of the reference software clock for signals with an event divider greater than 1.

• Time Tagger 20 Edu is supported.

Time Tagger Lab bug fixes

• Fix the crash when capturing high-resolution counter-time traces.

• Fix the crash when the USB connection to the device is unstable.

• Fix the crash when exporting large Scope measurement data.

• Fix the crash when exporting a plot to a PNG file.

• Fix the crash when measurements require too much memory on initialization.

• User interface issues with small screens are solved.

11.10 V2.14.0 - 23.12.2022
Time Tagger X

• Adds support for Time Tagger X with hardware revision 1.1.

• Adds support for Synchronizer with Time Tagger X and also mixed setups with Time Tagger Ultra.

• Provides preliminary Ethernet support on the SFP+.

• Improves the auto-calibration for periodic signals.

• Better CPU performance for aligned tags.

• Improves the channel LED blinking for 1pps signals.

• Shows calibration errors on the channel LED in red.

• Fixes a random skew jump of 1333 ps per input channel on USB errors.

• Fixes the channel LED indication for falling events.

Bug fix

• Fix Power LED turning off after calling freeTimeTagger() on the Time Tagger Ultra.

11.11 V2.13.2 - 22.11.2022
Highlight

• Release of Time Tagger Lab - the native UI for Windows.
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11.12 V2.12.4 - 09.11.2022
Improvement

• Adds support for Time Tagger Ultra with hardware revision 1.7.

Bug fix

• Fixed Web Application data export for HistogramLogBins.

11.13 V2.12.2 - 04.10.2022
Bug fixes

• Fixes wrong Tag::Type::Error event generation and channel detection in mergeStreamFiles().

• Fixes host license querying for TimeTaggerNetwork clients (broken in v2.12.0)

• Python: Fixes the decoding of the return values of getDeviceLicense() and getSensorData() of
TimeTaggerNetwork .

• C++: Fixes std::string unmarshalling within the Network Time Tagger.

Various improvements

• Adds method getTraceFrequencyAbsolute() to FrequencyStability.

• Adds method getChannelList() to FileReader.

11.14 V2.12.0 - 01.09.2022
Highlights

• Add support for our new high precision measurement device, the Time Tagger X, with a typical timing resolution
of 2.0 picoseconds.

WebApp

• Change default access mode to AccessMode::Control for Time Tagger Network.

Features

• Improve the performance of the Synchronizer. Two Time Tagger Ultra devices now can achieve a total data rate
of over 100 Mtags per second.

• Add support for the new Ubuntu Long Term Support release 22.04 Jammy Jellyfish.

Behavior change

• All provided strings to the C++ API must be encoded as UTF-8, returning strings are also UTF-8 encoded.

• Rename getLicenseInfo() to getDeviceLicense(). It returns a JSON formatted string for easier processing.

• Drop support for obsolete Python versions 2.7 and 3.5 and for the obsolete Linux distributions CentOS 7 and
Ubuntu 16.04.
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Examples

• Jitter verification requests the specified jitter values directly from the Time Tagger backend.

• FLIM example is now available for MATLAB

Various Fixes and Improvements

• Fix Unicode characters in all filenames of FileWriter and FileReader.

• Fix CoincidenceFactory for MATLAB and Labview.

• Fix the Flim measurement for MATLAB.

• Fix the crash on a failing license download within the initialization of the Network Time Tagger.

• Prefer a host-locked license over a user-locked license in the Virtual Time Tagger. This reduces the chance of a
false-positive anti-virus warning.

• Improve the rounding behavior of getTriggerLevel().

• Update of the USB driver for various fixes.

11.15 V2.11.0 - 22.04.2022
Highlights

• Introduced mergeStreamFiles() to combine several FileWriter files into one.

Time Tagger Network

• New Protocol version 3.1 with a new set of features. Backward compatible with 3.0.

• Improved messages for connection loss and disconnection. Additionally, messages for connecting to new and
old versions of TTN will be presented.

• Fixed issue related to implicit call of sync() on measurement creation in AccessMode::Listen mode.

• Server and network information has been added to getConfiguration().

• Fixed crashes when streaming over 250 channels.

• Various race conditions and possible freezes have been fixed.

• Faster initialization of measurements with many channels.

• Fixed error handling on disconnection.

• Reduced connection timeout to 10 seconds.

• Fixed an issue where channels used by a client remained registered after a disconnect.

• setTimeTaggerNetworkStreamCompression() can be utilized to double the maximum transfer rate in a very
slow network environment (<= 100 Mbit/s).

Time Tagger Virtual

• The TimeTaggerVirtual will now wait for a test signal channel to be registered before starting to stream it
(behavior identical to a hardware Time Tagger).
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GatedChannel

• Optional constructor argument initial of type GatedChannelInitial to initialize the gate optionally in an open
state.

• Changed behavior if input_channel equals gate_start_channel or gate_stop_channel to allow for operation sim-
ilar to the ConditionalFilter.

FrequencyStability

• Fixed getTraceFrequency(); now it returns the relative frequency error instead of the relative period error.

• Traces are no longer truncated to the length of the maximum steps.

• Corrected behavior if stopped and restarted without clearing.

Other measurement classes

• HistogramLogBins: Removed bins which have a bin width of 0 ps.

• SynchronizedMeasurements: Methods calls on a SynchronizedMeasurements object without any regis-
tered measurements will no longer generate an exception but a warning.

• TimeDifferences: Added getHistogramIndex() to return the index of the histogram being processed cur-
rently.

• Exposed Tag::Type to be used with TimeTagStream and CustomMeasurement.

Synchronizer

• Improved error messages.

• Fixed USB errors occurring under very high data rates.

Examples

• Added Visual Basic .NET example

Various Fixes

• Fixed crash on createTimeTagger() during a USB error.

• Fixed an issue where startFor() could run further than the specified time on HistogramLogBins and
FileWriter.

• WebApp: Fixed argument handling on Linux.

• MATLAB: Supports now Resolution for HighRes.

• MATLAB: Verifies that the version of the installed backend matches the wrapper version.

11.16 V2.10.6 - 16.03.2022
Improvements

• Adds support for Time Tagger Ultra with hardware revision 1.6b.
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11.17 V2.10.4 - 23.02.2022
WebApp

• Fixed Input Delay for negative values.

• Fixed adding new channels for Countrate measurement.

• Fixed HistogramLogBins for low start times (< 10ps).

• Fixed units for data export of Counter, Correlation, Histogram2D, and HistogramLogBinsmeasurements.

11.18 V2.10.2 - 31.12.2021
Improvements

• Added support for Python 3.10.

Fixes for issues since v2.10.0

• Fixed HistogramLogBins in the Web Application.

• Fixed DelayedChannel for negative delays.

• Fixed an issue with Counter::getDataTotalCounts() not resetting to 0 on clear().

• Fixed some MATLAB examples not being compatible with 2016b or older.

11.19 V2.10.0 - 22.12.2021
Highlights

• Time Tagger Network: All Time Tagger devices and the acquired data can be accessed via the network from
multiple clients or locally across the different programming languages. The clients can use all TimeTagger
measurement classes and may optionally control the settings of the physical Time Tagger.

• A new frequency stability toolbox: It offers on-the-fly evaluation of periodic signals by calculating several anal-
ysis metrics, including, for example, the Allan deviation (ADEV) and time deviation (TDEV).

• Software Clock: The new recommended method for using an external clock on the Time Tagger Ultra. The
time tag stream is rescaled on the software side with respect to the connected clock. It allows for a broad input
frequency range and also calculates phase error estimators. In addition, the input jitter of the clock channel will
be averaged out, resulting in a lower jitter for measurements including the clock channel directly.

Features

• Counter: New getDataObject() returning data as an object of CounterData and allowing for continuous
chunkwise data acquisition. This object contains the Counter data, timing information and overflow flags.

• New HistogramND measurement, which is a multidimensional generalization of the older Histogram2D.

• New Sampler measurement class for a triggered sampling of the current state of other channels.

• Measurement and virtual channel settings can now be requested with getConfiguration() method. The set-
tings of all measurements are also available in the return value of getConfiguration() method.
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WebApp

• A Time Tagger Network server can be activated in the settings.

• Includes the Software Clock feature.

• Adds Event Divider settings.

• Shows specified RMS jitter for each channel in HighRes mode.

• It is now possible to specify the integration time in a single-shot or cyclic mode (internally uses startFor())
for all available measurement classes.

Performance

• Improved performance of Counter, Countrate, TimeTagStream , Combiner, DelayedChannel for many
channels.

• HistogramLogBins with an improved algorithm, multithreading, and AVX2+AVX512 tuning.

• Coincidences improved for high input rates with low coincidence rates.

Behavior change

• TimeTagStream now always requires a list of channels.

• CustomMeasurement in Python: with self.mutex replaces self.lock and self.unlock.

• A Synchronizer with only one Time Tagger will use the timestamps of the Synchronizer but the channel identifiers
of the single device itself.

• No messages on the INFO level will be shown in MATLAB to avoid running into deadlocks.

• std::invalid_argument exceptions are now wrapped as ValueError in Python.

Examples

• New Python example to measure the maximum transfer rate and the jitter.

• New Python example to show coincidence counting applications.

• New example to show the use of the software clock and measure the frequency stability of the test signal in
Python, MATLAB and LabVIEW.

• Update the Counter example in Python and MATLAB to show the use of the new CounterData.

Fixes

• Skips an unlikely blocking freeTimeTagger() call for up to 10 seconds.

• Fixes the 64-bit signed integer overflow after 106 days on Linux.

• Stops playing the last sound of setSoundFrequency() after freeTimeTagger().

• Fixes the timing of TimeTagStreamBuffer::tGetData in the last block of FileReader.

• Adds support for TTU HW revision 1.6 and TT20 Value.

• Fixes the empty configuration and channel list in FileReader before fetching the first time tag.

• Fixes a race condition on the Time Tagger Ultra, which may yield one invalid time tag after USB connection
errors.

• Fixes a crash on using with CustomMeasurement() as c in Python.

• Fixes incorrectly displayed units in the WebApp if measurement settings changed during a measurement.
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• Fixes the behavior of Histogram2D if start_channel matches a stop channel.

• Fixes the behavior of Countrate with startFor if it ends within an overflow interval.

11.20 V2.9.0 - 07.06.2021
Highlights

• Reduced communication latency of all Time Taggers.

• Reduced Time Tagger 20 crosstalk on channel 1 and 2.

• Improved USB connection stability for Time Tagger 20.

• Optional collection and reporting of pseudonymous usage statistics. Improvement program.

• Please use at least v2.9.0 for devices shipped from 2021 on.

Changes

• getConfiguration() and getSensorData() return a JSON string with partially renamed sensor names.

• Altered Countrate::getData() to return NaN (Not a Number) for zero capture durations.

• Uses enum.Enum as base class for all enumerators in the Python wrapper (Python >= 3.5).

• Improved the format of the Time Tagger error messages.

Features

• Added setHardwareBufferSize() for the Time Tagger 20.

• Added an example and tutorial on how to work with a remote Time Tagger using Python and the Pyro5 package.

• License upgrades can be flashed now for the Time Tagger 20 via the web application.

Bug fixes

• Fixed setStreamBlockSize() block size heuristic while uploading new configuration.

• Fixed slow performance of freeTimeTagger() in overflow mode.

• Fixed waitUntilFinished() invoke nodes in LabVIEW examples.

• Fixed error message in the Web Application for non compatible devices.

• Fixed getConfiguration(). Now it is returning configuration data for TimeTaggerVirtual class.

• Fixed a possible crash on Python interpreter exit while running CustomMeasurement.

• Fixed sync() signaling one block too late. The fix reduces the sync, measurement start and clear times.

11.21 V2.8.4 - 04.05.2021
• Fixed the initialization for a Virtual Time Tagger in the Web Application

11.22 V2.8.2 - 26.04.2021
• Fixed non appearing option to initialize in HighRes mode after upgrading/flashing the device in the Web Appli-

cation.
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11.23 V2.8.0 - 29.03.2021
Highlights

• High-resolution options for the Time Tagger Ultra series with a timing jitter of down to 4 ps RMS per channel.

• Hardware input delay on the Time Tagger Ultra series with picoseconds accuracy before the conditional filter.

• Reduced CPU load for Time Tagger Ultra.

Note

The release is fully compatible with all Time Tagger 20 devices. It is compatible with all Time Tagger Ultra devices
shipped from March 2021 and all earlier Time Tagger Ultra devices with 8 or less channels without HighRes
option. If you received Time Tagger Ultra before March 2021 and it has more than 8 channels or HighRes, it is not
compatible with the release. Please contact support to get a free device exchange to be fully compatible again.

New Time Tagger Ultra features

• Reduced crosstalk and thermal drift on all channels.

• The Time Tagger hardware sound module can be activated and set via setSoundFrequency(). It can be used,
e.g., for optical alignment purposes (count rate -> frequency).

Changes

• Split setInputDelay() into setDelayHardware() and setDelaySoftware().

• getChannelList() filter enum renamed to ChannelEdge.

• setNormalization() can now be configured per channel.

• Changed the default port of the WebApp to 50120 to avoid collision with Jupiter Notebooks.

• Maximum input frequency of the Time Tagger Ultra is reduced to 475 MHz.

• The deadtime specification of the Time Tagger Ultra changed to 2.1 ns. It can detect events separated by 2 ns
with possible loss of some events.

Features

• Added a TriggerOnCountrate virtual channel that generates events when a count rate crosses the given thresh-
old value.

• Added support for Python 3.9.

• waitUntilFinished() and sync have an optional timeout parameter.

Examples

• Mathematica: Added example for FileWriter and TimeTaggerVirtual.

• LabVIEW: Fixed broken example (#14) and added it to the LabVIEW project.

• C++: Added an example for Custom Virtual Channel.
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Bug fixes

• Histogram can be used with waitUntilFinished() and SynchronizedMeasurements. Histogram is now
derived from IteratorBase.

• Displaying the singleton warning of createTimeTagger just once.

• Fixed string conversion issue for old MATLAB versions.

• Hide “unused argument” warnings in the TimeTagger C++ headers.

11.24 V2.7.6 - 26.04.2021
• Fixed RuntimeError “Got the USB error ‘UnsupportedFeature’” when calling createTimeTagger()

11.25 V2.7.4 - 19.04.2021
• Fixed a bug for old Time Tagger Ultra devices, where the Web Application could not apply the license upgrade.

11.26 V2.7.2 - 22.12.2020
Highlights

• Reworked Flim implementation. Versatile high-level functionality with Flim and low-level CPU- and memory-
efficient access via FlimBase and callbacks.

• Highly improved TimeTaggerVirtual performance taking use of multithreading.

• Support for direct time tag stream access via Custom Measurements in C# and Python - see examples in the
installation folder.

Improvements

• Added AnyCPU targeted .NET Assembly for C# wrappers. Available in GAC_MSIL and the installation folder.

• More detailed error handling and human-readable error messages.

• Added Conditional Filter for TimeTaggerVirtual.

• Removed Intel’s libmmd.dll library dependency.

• All measurements have the new common method waitUntilFinished(), which can be used with startFor().

• Warnings are printed with time information.

• Cleanup of the C++ measurements’ header file.

• Remote license upgrades can be performed via the web application.

• Reworked Python and C# examples.

Fixes

• Countrate no longer clears total counts on start().

• Implemented getChannelList() and waitForFence() in MATLAB.

• Fixed setDeadtime() for the TimeTaggerVirtual using setTestSignal().

• Fixed a frequent crash in FileWriter with high data rates and multiple files.

• Fixed a crash in deleting measurements still registered to SynchronizedMeasurements.
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• Fixed an unlikely race condition of freeing measurements.

API changes

• The old FLIM class is replaced by a new implementation: Flim . In case you need the old implementation, there
is a 1 to 1 replacement, see here.

• All methods and measurements now throw exceptions instead of warning on wrong arguments like invalid chan-
nels or out-of-range parameters.

• Automatically call freeTimeTagger on del/clear/Dispose in Python/MATLAB/LabVIEW/C# .

• Removed the freeAllTimeTagger() method.

• Deprecate the multiple use of createTimeTagger() for one physical device. Pass on the timetagger object
instead.

• _Log is renamed to LogBase.

• Our libraries are compiled with VS 2019 now, so at least version 142 of the VC runtime is required in the final
application.

11.27 V2.7.0 - 01.10.2020
Highlights

• New measurements are automatically synchronized to the hardware. All data analyzed is guaranteed to be tem-
poral later than the measurement’s initialization, start, or clear. Data coming from the internal buffer, which was
acquired before the measurement was initialized, started, or cleared, will not be analyzed. Before this release,
the .sync() method was required for these tasks.

Fixes and improvements

• Added a MATLAB example for SynchronizedMeasurements.

• Fixed a bug in MATLAB, creating synced measurements via SynchronizedMeasruements and .getTagger().

• The last datapoint from a scope measurement is not marked as invalid any more.

11.28 V2.6.10 - 07.09.2020
Fixes and improvements

• Fixes input delay, deadtime and test signal generator for the TimeTaggerVirtual.

• Fixes getInvertedChannel with the Swabian Synchronizer and with Time Tagger Ultra 8 devices with the old
channel numbering schema.

• x axis is zoomable with Scope measurement.

• Better error handling for non-existent files with TimeTaggerVirtual and FileReader.

Python

• Changed the constants CoincidenceTimestamp_ to a Python enum (e.g., CoincidenceTimestamp_First is now
CoincidenceTimestamp.First).
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MATLAB

• Enum for timestamp argument for Coincidence(s) is available via TTCoincidenceTimestamp.

Linux

• Fix for slow Linux device opening.

11.29 V2.6.8 - 21.08.2020
Highlights

• Support for the Time Tagger Value edition. This is an upgradeable and cost-efficient version of the Time Tagger
Ultra for applications with moderate timing precision requirements.

Webapp

• Added Histogram2D to the measurement list.

• Improved performance and responsiveness for large datasets.

• 32-bit version of the Web Application works again.

• Fixed a bug that data of stopped measurements could not be saved.

• Fixed a bug that settings saved had the file extension .json instead of .ttconf ending.

• Fixed a bug when using falling edges for Time Tagger starting with channel 0.

Python

• Fixed a bug that some named arguments could not be used anymore.

API

• Added the method SynchronizedMeasurements::unregisterMeasurement() to remove measurements
from SynchronizedMeasurements.

Backend

• Improved performance of the FileWriter, exceeding 100 M tags/s on high-end CPUs.

• Improved binning performance of all histogram measurements: Correlation, FLIM, Histogram, StartStop,
TimeDifferences, TimeDifferencesND.

• Fixes a deadlock in the virtual Time Tagger if a measurement accesses some public methods of the Time Tagger.

11.30 V2.6.6 - 10.07.2020
Highlights

• Swabian Synchronizer support. The Synchronizer hardware can combine 8 Time Tagger Ultra devices with up
to 144 channels. The combined Time Tagger can be interfaced the very same as it would be only one device.

• Support for custom measurements in Python. Please see the provided programming example in the installation
folder for further details.
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Webapp

• Support for the Synchronizer

• Showing error messages from setLogger API in a modal window

• Load/save settings is now supported for the Time Tagger Virtual

Time Tagger Ultra

• Hardware revision 1.1 now with the same performance enhancement of 500 MHz maximum sync rate, 2ns dead
time and better phase stability, as introduced before for Hardware revision > 1.1

• Dropped support for the very first Time Tagger Ultra devices, an error will be shown on initialization - free
exchange program available

• More intuitive byte order of the bitmask in setLED

• Small modifications to the hardware channel to channel delay

Backend

• Coincidence and Coincideces have an optional parameter to select which timestamp should be inserted, the
last/first completing the coincidence, the average of the event timestamps, or the first of the coincidence list.

• Fixed .net/MATLAB/LabVIEW wrappers for data with empty 2D or 3D arrays

• Provide a globally registered .NET publisher policy for C#, avoiding the ‘wrong dll version’ message in Labview
when updating the Time Tagger software

• setConditionalFilter throws an exception when invalid arguments are applied

• Hide the warning on fetching the TimeTaggerVirtual license without an internet connection

• DelayedChannel supports a negative delay

• Performance enhancements in StartStop

11.31 V2.6.4 - 27.05.2020
WebApp

• Option to enable logarithmic y-axis scaling for Counter, Histogram, HistogramLogBins and Correlation

• Redesign “Create measurement” dialog with links to the online documentation

• Fixed flickering when switching between plots

• Fixed plotting wrong data range when changing the number of data points

• Added the basic functionality of the TimeTaggerVirtual (test signal only)

New features and improvements

• Added the test signal to TimeTaggerVirtual

• Support for Ubuntu 20.04 and CentOS 8

• LabVIEW example for FileWriter and FileReader

• Improved MATLAB API for VirtualTimeTagger, adding optional parameters

• Make the data transfer size configurable by .setStreamBlockSize

• Performance improvements for HistogramLogBins
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• Slightly improved timing jitter at large time differences for the Time Tagger 20

• Time Tagger Application works again with 32 bit operating systems

• Connection errors are shown in the MATLAB console or can be handled with the new logger functionality

• Added custom logger examples for MATLAB/Python/C#

Changes

• Updated the USB library

• Stop measurements when freeTimeTagger is called (e.g. closes files on dump, isRunning now returns false)

• Reduced polling rate (0.1s) for USB reconnections

API changes

• Added .setLogger() to attach a callback function for custom info/error logging

• Rename of enumeration ErrorLevel to LogLevel

• Rename of log level constants and with new corresponding integer values

11.32 V2.6.2 - 10.03.2020
Highlights

• TimeTaggerVirtual, FileWriter, and FileReader have reached a stable state

• Improved Linux support (documentation, compiling custom Python wrappers)

New features

• Added setInputDelay, setDeadtime, getOverflows, and more to the TimeTaggerVirtual

• Add an optional parameter in setConditionalFilter for disabling the hardware delay compensation

• Infinite dumping in Dump for negative max_count

• Create a freeAllTimeTagger() method, which is called by Python atexit

• Reimplement SynchronizedMeasurements as a proxy tagger object, which auto registers new measurements with-
out starting them

• The new SynchronizedMeasurements.isRunning() method returns if any measurement is still running

• Python: Distribute the generated C++ wrapper source for supporting future Python revisions

• C++: New IteratorBase.getLock method returning a std::unique_lock

• C++: Improved exception handling for custom measurements: exceptions now stop the measurement, runSyn-
chronized forwards exceptions to the caller

API changes

• TimeTagger.getVersion return value is changed to a string

• C++: Use 64 bit integers for the dimensions in the array_out helpers

• C++: Rename the base class for custom measurements from _Iterator to IteratorBase

• C++: Constructors of custom measurements shall call finishInitialization instead of IteratorBase.start

• Python 2.7: Update the numpy C headers to 1.16.1
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Examples and documentation

• Improved Histogram2D example

• Clarify setInputDelay vs DelayedChannel

Bug fixes

• Relax the voltage supply check in the Time Tagger Ultra hardware revision 1.4

• Use a 1 MB buffer for Dump, FileWriter, and FileReader to achieve full speed especially on network devices

• Fix getTimeTaggerModel on an active device

• Fix deadlock within sync() while the device is disconnected

• Provide the documentation on Linux

• Several fixes and improvements for the FileWriter and TimeTaggerVirtual

WebApp

• Improved default names for measurements

• Not relying on data stored within the browser any more

• Disabling mouse scrolling within numeric inputs

• Various buxfixes

11.33 V2.6.0 - 23.12.2019
Highlights

• FileWriter: New space-efficient file writer for storing time tag stream on a disk. The file size is reduced by a
factor of 4 to 8. Replaces the Dump function.

• Virtual Time Tagger allows to replay previously dumped events back into the Time Tagger software engine.

• Improved behavior in the overflow mode. The hardware now also reports the amount of missed events per input
channel and provides the start and the end timestamps of the overflow interval.

• New tutorial on how to implement the data acquisition for a confocal microscope

• New measurement Histogram2D for 2-dimensional histogramming with examples

• Web App: Selectable input units (s/ms/µs/ps) instead of ps only

Known issues

• FileWriter and FileReader have a low performance on network devices

API changes

• deprecated TimeTagStreamBuffer.getOverflows() – use .getEventTypes() instead

• renamed HistogramLogBin.getDataNormalized() to .getDataNormalizedCountsPerPs()

• removed deprecated TimeTagger.getChannels() - use .getChannelList() instead

• removed deprecated CHANNEL_INVALID - use CHANNEL_UNUSED instead

• removed deprecated TimeTagger.setFilter() and TimeTagger.getFilter() - use .setConditionalFilter(), .getCondi-
tionalFilter(), and .clearConditionalFilter() instead
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• C++: All custom measurement class constructors must be modified, such that the parameter containing the Time
Tagger is of the type TimeTaggerBase. This allows for using the custom measurement within a real Time Tagger
object and the Time Tagger Virtual.

• C++: The struct Tag includes the type of event and the amount of missed events. They have replaced the overflow
field.

• C++/Windows: We additionally distribute binaries for the debug runtime (/MDd)

• MATLAB: TimeTagger.free() is now deprecated, use .freeTimeTagger()

New features

• Web App: Normalization (counts/s) for the Counter measurement

• getConfiguration returns the current hardware configuration as a JSON string

• added g2 normalization for HistogramLogBins with getDataNormalizedG2

• improved overflow behavior for Countrate due to the missed event counters

• improved overflow handling for the g2 normalization of Correlation and HistogramLogBin

• support for Python version 3.8

• smaller latency on low data rates due to adaptive chunk sizes of <= 20 ms

• support for the Time Tagger Ultra hardware revision 1.4

Examples

• MATLAB: Faster loading of events from disk for now deprecated Dump file format

• C++: Loading events from disk stored in the new data format

• Labview: Scope example, .NET version redirection

• Mathematica: Improved example

• Python: Added “Stop” button to the countrate figure.

Bug fixes

• fixed static input delay error with conditional filter enabled since v2.2.4

• added missing TimeTagger.getTestSignalDivider() method

• Scope: Fix the output if one channel has had no events

• resolve overflows after the initialization of the Time Tagger 20

• fixes an issue with wrongly sorted events on the reconfiguration of input delays

• always emit an error event on plugging an external clock source

• fixes an unlikely case when the synchronization of the external clock got lost

• the new USB driver version fixes some random data abruption

• TTU1.3: Fix a bug which may select a wrong clock source in the first 21 seconds and wrongly activated ext clock
LED

• MATLAB: SynchronizedMeasurements work now in MATLAB, too

• different improvements within the python and C# wrappers

• LED turns off and not red after freeing a Time Tagger
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• Dump now releases the file handle after the end of the startFor duration

• Web App: Removed caching issues when up or downgrading the software

11.34 V2.4.4 - 29.07.2019
• reduced crosstalk between nonadjacent channels of the Time Tagger Ultra

• fixed a bug leading to high crosstalk with V2.4.2 for specific channels

• fixed a rare clock selection issue on the Time Tagger 20

• improved and more detailed documentation

• new method Countrate::getCountsTotal(), which returns the absolute number of events counted

• new Mathematica quickstart example

• new Scope example for LabVIEW

• support of the Time Tagger 20 series with hardware revision 2.3

• release the Python GIL while in the Time Tagger engine code

• fixed a bug in ConstantFractionDiscriminator, which could cause that no virtual tags were generated

11.35 V2.4.2 - 12.05.2019
• support of the Time Tagger Ultra series with hardware revision 1.3

• improve performance of short pulse sequences on the Time Tagger 20 series

• improve overflow behavior at too high input data rates

• fix the name of the ‘SynchronizedMeasurements’ measurement class

11.36 V2.4.0 - 10.04.2019
Libraries

• 32 bit C++ library added

• C++ and .NET libraries renamed and registered globally

API

• virtual constant fraction discriminator channel ‘ConstantFractionDiscriminator’ added

• ‘TimeDifferenceND’ added for multidimensional time differences measurements

• faster binning in ‘TimeDifferences’ and ‘Correlation’ measurements

• improved memory handling for ‘TimeTageStream’

• improved Python library include

• fixed ‘.getNormalizedData’ for ‘Correlation’ measurements

• various minor bug fixes and improvements
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Examples

• LabVIEW project for 32 and 64 bit

• improved LabVIEW examples

Time Tagger Ultra

• 10 MHz EXT input clock detection enabled

• internal buffer size can be increased from 40 MTags to 512 MTags with ‘setHardwareBufferSize’

• reduced crosstalk and timing jitter

• increased maximum transfer rate to above 65 MTags/s (Intel 5 GHz CPU on 64 bit)

• various performance improvements

• reduced deadtime to 2 ns on hardware revision >= 1.2

Time Tagger 20

• 166.6 MHz EXT input clock detection enabled

Operating systems

• equivalent support for Windows 32 and 64 bit, Ubuntu 16.04 and 18.04 64 bit, CentOS 7 64 bit

11.37 V2.2.4 - 29.01.2019
• fix the conditional filter with filter and trigger events arriving within one clock cycle

• fix issue with negative input delays

• calling .stop() while dumping data stops the dump and closes the file

• fix device selection on reconnection after transfer errors

• synchronize tags of falling edges to their rising ones

11.38 V2.2.2 - 13.11.2018
• Removed not required Microsoft prerequisites.

• 32 bit version available

11.39 V2.2.0 - 07.11.2018
General improvements

• support for devices starting with channel 1 instead of 0

• under certain circumstances, the crosstalk for the Time Tagger 20 of channel 0-2, 0-3, 1-2, and 1-3 was highly
increased, which has been fixed now

• updated and extended examples for all programming languages (Python, MATLAB, C#, C++, LabVIEW)

• C++ examples for Visual Studio 2017, with debug support

• documentation for virtual channels

• Web app included in the 32 bit installer
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• Linux package available for Ubuntu 16.04

• Support for Python 3.7

API

• ‘HistogramLogBin’ allows analyzing incoming tags with logarithmic bin sizes.

• ‘FrequencyMultiplier’ virtual channel class for upscaling a signal attached to the Time Tagger. This method can
be used as an alternative to the ‘Conditonal Filter’.

• ‘SynchronizedMeasurements’ class available to fully synchronize start(), stop(), clear() of different measure-
ments.

• Second parameter from ‘setConditionalFilter’ changed from ‘filter’ to ‘filtered’.

Web application

• full ‘setConditionalFilter’ functionality available from the backend within the Web application

11.40 V2.1.6 - 17.05.2018
fixed an error with getBinWidths from CountBetweenMarkers returning wrong values

11.41 V2.1.4 - 21.03.2018
fixed bin equilibration error appearing since V2.1.0

11.42 V2.1.2 - 14.03.2018
fixed issue installing the MATLAB toolbox

11.43 V2.1.0 - 06.03.2018
Time Tagger Ultra

• efficient buffering of up to 60 MTags within the device to avoid overflows

11.44 V2.0.4 - 01.02.2018
Bug fixes

• Closing the web application server window works properly now

11.45 V2.0.2 - 17.01.2018
Improvements

• MATLAB GUI example added

• MATLAB dump/load example added
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Bug fixes

• dump class writing tags multiple times when the optional channel parameter is used

• Counter and Countrate skip the time in between a .stop() and a .start() call

• The Counter class now handles overflows properly. As soon as an overflow occurs the lost data junk is skipped
and the Counter resumes with the new tags arriving with no gap on the time axis.

11.46 V2.0.0 - 14.12.2017
Release of the Time Tagger Ultra

Note

The input delays might be shifted (up to a few hundred ps) compared to older driver versions.

Documentation changes

• new section ‘In Depth Guides’ explaining the hardware event filter

Webapp

• fixed a bug setting the input values to 0 when typing in a new value

• new server launcher screen which stops the server reliably when the application is closed

11.47 V1.0.20 - 24.10.2017
Virtual Channels

• DelayedChannel clones and optionally delays a stream of time tags from an input channel

• GatedChannel clones an input stream, which is gated via a start and stop channel (e.g. rising and falling edge of
another physical channel)

API

• startFor(duration) method implemented for all measurements to acquire data for a predefined duration

• getCaptureDuration() available for all measurements to return the current capture duration

• getDataNormalized() available for Correlation

• setEventDivider(channel, divider) also transmits every nth event (divider) on channel defined

Webapp

• label for 0 on the x-axis is now 0 instead of a tiny value

C++ API:

• internal change so that clear_impl() and next_impl() must be overwritten instead of clear() and next()
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Other bug fixes/improvements

• improved documentation and examples

11.48 V1.0.6 - 16.03.2017
Web application (GUI)

• load/save settings available for the Time Tagger and the measurements

• correct x-axis scaling

• input channels can be labeled

• save data as tab separated output file (for MATLAB, Excel, . . . import)

• fixed: saving measurement data now works reliably

• fixed: ‘Initialize’ button of measurements works now with tablets and phones

API

• direct time stream access possible with new class TimeTagStream (before the stream could be only dumped with
Dump)

• Python 3.6 support

• better error handling (throwing exceptions) when libraries not found or no Time Tagger attached

• setTestSignal(. . . ) can be used with a vector of channels instead of a single channel only

• Dump(. . . ) now with an optional vector of channels to explicitly dump the channels passed

• CHANNEL_INVALID is deprecated - use CHANNEL_UNUSED instead

• Coincidences class (multiple Coincidences) can be used now within MATLAB/LabVIEW

Documentation changes

• documentation of every measurement now includes a figure

• update and include web application in the quickstart section

Other bug fixes/improvements

• no internal test tags leaking through from the initialization of the Time Tagger

• Counter class not clearing the data buffer in time when no tags arrive

• search path for bitfile and libraries in Linux now work as they should

• installer for 32 bit OS available

11.49 V1.0.4 - 24.11.2016
Hardware changes

• extended event filter to multiple conditions and filter channels

• improved jitter for channel 0

• channel delays might be different from the previous version (< 1 ns)
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API changes

• new function setConditionalFilter allows for multiple filter and event channels (replaces setFilter)

• Scope class implements functionality to use the Time Tagger as a 50 GHz digitizer

• Coincidences class now can handle multiple coincidence groups which is much faster than multiple instances of
Coincidence

• added examples for C++ and .net

Software changes

• improved GUI (Web application)

Bug fixes

• MATLAB/LabVIEW is not required to have the Visual Studio Redistributable package installed

11.50 V1.0.2 - 28.07.2016
Major changes:

• LabVIEW support including various example VIs

• MATLAB support including various example scripts

• .net assembly / class library provided (32 and 64 bit)

• WebApp graphical user interface to get started without writing a single line of code

• Improved performance (multicore CPUs are supported)

API changes:

• reset() function added to reset a Time Tagger device to the startup state

• getOverflowsAndClear() and clearOverflows() introduced to be able to reset the overflow counter

• support for python 3.5 (32 and 64 bit) instead of 3.4

11.51 V1.0.0
initial release supporting python

11.52 Channel Number Schema 0 and 1
The Time Taggers delivered before mid 2018 started with channel number 0, which is very convenient for most of the
programming languages.

Nevertheless, with the introduction of the Time Tagger Ultra and negative trigger levels, the falling edges became more
and more important, and with the old channel schema, it was not intuitive to get the channel number of the falling edge.

This is why we decided to make a profound change, and we switched to the channel schema which starts with channel 1
instead of 0. The falling edges can be accessed via the corresponding negative channel number, which is very intuitive
to use.
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Time Tagger 20 and Ultra 8 Time Tagger Ultra 18 Schema
rising falling rising falling

old 0 to 7 8 to 15 0 to 17 18 to 35 TT_CHANNEL_NUMBER_SCHEME_ZERO
new 1 to 8 -1 to -8 1 to 18 -1 to -18 TT_CHANNEL_NUMBER_SCHEME_ONE

With release V2.2.0, the channel number was detected automatically for the device in use. It was according to the labels
on the device. With release V2.17.0, the channel number starts with the number 1 by default for all devices, regardless
of the labels on the device.

In case another channel schema is required, please use setTimeTaggerChannelNumberScheme(int scheme) be-
fore the first Time Tagger is initialized.

int getInvertedChannel(int channel)was introduced to get the opposite edge of a given channel independent
of the channel schema.
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