
Pulse Streamer-API migration document
Pulse Streamer 8/2, v0.9 -> v1.3.0

Backwards Compatibility:

The current Pulse Streamer 8/2 client software (available in Python, Matlab and LabView)

is not backwards compatible with firmware v0.9 and the firmware versions v1.0.x and later

are not working with the client software related to devices shipped before November 2018.

All Pulse Streamer 8/2 delivered before November 2018 were shipped with firmware V0.9.

We recommend to update all devices shipped before July 2020 to our latest firmware

version v1.3.0.

Modified functionality (with regard to V0.9):

Default and recommended communication protocol between the PC and the Pulse Streamer

is now JSON-RPC instead of Google-RPC.

The Pulse Streamer is automatically rearmed after a sequence with a finite number of

n_runs has finished. That means if another trigger occurs after the sequence has finished,

the sequence is running again.

To disable the auto rearm use the method setTrigger(...). If automatic rearm

functionality is disabled, you can manually rearm the Pulse Streamer by using the method

rearm(). After that, you can retrigger a successfully finished sequence exactly one time

by the trigger mode you selected with the start argument.

Underflows do not occur anymore, even at the highest possible data rate, which is streaming

a new pattern every 1ns. Therefore, the getUnderflow() method always returns false.

The recommended way to stop the Pulse Streamer streaming is to set its output to a constant

value via the method constant(). However, if you want to stop a running sequence and

force it to the dedicated final state, you can do this by calling the method forceFinal().

If no final state was declared in the current sequence, the output of Pulse Streamer will

change to (or stay in) the last known constant state. Furthermore, if upload-performance is

crucial to your application, you can call this function directly before streaming the next

sequence. This will increase the upload-performance by about 20 percent.

In order to communicate with the Pulse Streamer, you need to know its IP. By default, the

Pulse Streamer will attempt to acquire an IP address via DHCP. The former fallback

IP192.168.1.100 does no longer exist. With firmware v1.2.0 we introduce a module level

function to discover a Pulse Streamer device in the network. The function

findPulseStreamers(search_serial='') returns the IP and other basic

information about discovered Pulse Streamers. .In addition, there is a permanent second

static IP-address 169.254.8.2/16. Via this address you can connect by directly plugging the

Pulse Streamer to your computer. Maybe you will have to reboot Windows to detect the

Pulse Streamer, if there was a connection via DHCP before. Furthermore, you can disable

DHCP and configure a static IP instead. We provide tools for doing so on our website. For

help please contact support@swabianinstruments.com.

Using the revised Pulse Streamer 8/2 client software:

For the Pulse Streamer 8/2 we provide software clients available in Python, Matlab and

LabView to allow easy and convenient access to the device. In general, the clients consist

of a PulseStreamer and a Sequence module. The class PulseStreamer is a wrapper for the

RPC interface provided by the Pulse Streamer hardware. It handles the connection to the

hardware and exposes all available methods. The Sequence contains information about the

patterns and channel assignments. It allows you to create sophisticated sequences for your

Pulse Streamer application.

The current client software version shows differences in relation to the version shipped with

firmware V0.9. To adapt code written for devices with firmware v0.9 to the latest client

software interfaces, the following lines shall give a small overview to the changes of the

rpc-calls. For a more detailed description, please have a look at our profound

documentation:

https://www.swabianinstruments.com/static/documentation/pulse-streamer/v1.2/index.html

Modified methods:

stream(…)

Removed methods:

 isRunning()

New methods:

 reset()

 createSequence()

 forceFinal()

 isStreaming()

 hasFinished()

 setTrigger(…)

 rearm()

 selectClock(…)

 getClock()

 getFirmwareVersion()

 getSerial()

 getFPGAID()

 setHostname(…)

 getHostname()

 getTriggerStart()

 getTriggerRearm()

file:///D:/Lin_Win/API/Migration_doc/support@swabianinstruments.com
https://www.swabianinstruments.com/static/documentation/pulse-streamer/v1.2/index.html

setAnalogCalibration(…)

getAnalogCalibration()

Module level methods:

 findPulsestreamers(…)

If you need assistance with the transcription of your code,

please contact support@swabianinstruments.com.

Using the low-level RPC interface:

Although we recommend to use our client software to handle the Pulse Streamer 8/2, this

section describes the changes of the low-level RPC interface of the Pulse Streamer with

regard to firmware version V0.9. You can use this information for a deeper understanding

of how to control Pulse Streamer hardware or to develop/adapt your own communication

programs.

Modified methods:

void stream(std::vector<Pulse> sequence,

int64_t n_runs=INFINITE,

Pulse final=CONSTANT_ZERO)

Running a pulse sequence corresponds to a single function call where you pass your pulse

sequence as the sequence argument.

You can repeat a pulse sequence indefinitely or an integer number of times which is

controlled via the parameter n_runs.

A sequence run will start from the current constant output state. After the sequence has

been repeated the given n_runs, the final output state will be reached.

By default, the sequence is started immediately. Alternatively, you can tell the system to

wait for a later software start command or for an external hardware trigger applied via

setTrigger(...).

The sequence is repeated infinitely if n_runs < 0 and a finite number of repetitions

otherwise. INFINITE is a symbolic constant with the value -1. final represent the

constant output after the sequence is finished (the tick values are ignored).

CONSTANT_ZERO is a symbolic constant for a pulse with the value {0,0,0,0}. A pulse

has the data structure:

struct Pulse {uint32_t ticks, // duration in ns

 uint8_t digi, // digital channel bit mask

 int16_t ao0, // analog channel 0

 int16_t ao1, // analog channel 1

};

All parameters except sequence have default values and can be omitted.

The parameter start mode has been moved to the method setTrigger(start_t star, ...)

mailto:support@swabianinstruments.com

The underflow state does not exist any more, because undeflows cannot occur

anymore even when every ns a different output pattern is defined.

The initial state can be set via setConstant(...).

Removed methods:

bool isRunning()

The method isRunning() in the old firmware version did not return whether the pulse

streamer was currently streaming output. That is why it is removed. New methods to

check the current state of the Pulse Streamer are: isStreaming(), hasFinished(), and

hasSequence()

New methods:

void reset()

All outputs are set to 0V and all functional configurations are set to default. The automatic

rearm functionality is enabled, the clock source is the internal clock of the device. No

specific trigger functionality is enabled, which means that each sequence is streamed

immediately when its upload is completed.

std::string getSerial()

The method returns a hexadecimal string containing the serial number/MAC-address of

the device.

 std::string getFPGAID()

The method returns a hexadecimal string containing the ID-number of the FPGA inside

the Pulse Streamer.

std::string getFirmwareVersion()

 The method returns the version number of the current firmware.

void selectClock(clocking_t clocksource=INTERNAL)

The Pulse Streamer can be fed in with three different clock sources. By default, the clock

source is the internal clock of the device. It is also possible to feed in the system by an

external clock of 125MHz (sampling clock) or an external 10MHz reference clock.

clock_source is an enum with {INTERNAL:0, EXT_125MHZ:1, EXT_10MHZ:2}.

 unsigned int getClock()

 The method returns the unsigned integer value of the clocksource enum respective

the current clock configuration.

bool isStreaming()

This method replaces its predecessor isRunning(). In contrast to isRunning(),

this method only returns true if the Pulse Streamer is streaming the current sequence.

When the sequence is finished and the device remains in the final state, this method

returns false again.

bool hasFinished()

This method returns true if the Pulse Streamer remains in the final state after having

finished the sequence.

void setTrigger(start_t start, trigger_rearm_t rearm=NORMAL)

This method configures the trigger functionality, which is no longer set in the stream-

method.

start is an enum with the mapping {IMMEDIATE:0, SOFTWARE:1,

HARDWARE_RISING:2, HARDWARE_FALLING:3,

HARDWARE_RISING_AND_FALLING:4} specifying how the stream should be

started. If you have passed start=SOFTWARE, you can start the sequence using the

method startNow(). If you want to trigger the Pulse Streamer by using the external

trigger input of the device you have to pass HARDWARE_RISING (rising edge is the

active trigger flank), HARDWARE_FALLING (falling edge is the active trigger flank) or

HARDWARE_RISING_AND_FALLING (both edges are active) to the start

argument.

mode is an enum with the mapping{NORMAL:0, SINGLE:1}. If automatic rearm

functionality is enabled (mode=NORMAL) you can retrigger a successfully finished

sequence, by the trigger mode you selected with the start argument. You can disable

the automatic rearm by passing SINGLE to the mode argument.

 unsigned int getTriggerStart()

The method returns the unsigned integer value of the start enum respective the current

trigger configuration.

 unsigned int getTriggerRearm()

The method returns the unsigned integer value of the rearm enum respective the current

trigger configuration.

 void setHostname(const std::string& hostname)

 The method sets the hostname assigned to the device.

 std::string getHostname()
 The method returns the hostname assigned to the device.

Unchanged methods:

void constant(Pulse pulse)

This method sets all outputs to 0V. If you set the device to a constant output an eventually

currently streamed sequence is stopped. It is not possible to retrigger the last streamed

sequence after setting the Pulse Streamer constant.

void startNow()

By using this method, you can start a sequence, if you have passed SOFTWARE to the

start argument via setTrigger(…).

bool hasSequence()

The method returns true if a uploaded sequence is ready within the memory of the

Pulse Streamer.

